
CDIFF: REDUCE PACKAGES

FOR COMPUTATIONS IN GEOMETRY OF PDES

R. VITOLO

Abstract. We describe CDIFF, a symbolic computation package for the geometry of
Differential Equations (DEs, for short) and developed by P. Gragert, P.H.M. Kersten,
G. Post and G. Roelofs at the University of Twente, The Netherlands.

The package is part of the official REDUCE distribution at Sourceforge [1], but it is
also distributed on the Geometry of Differential Equations web site http://gdeq.org
(GDEQ for short).

We start from an installation guide for Linux and Windows. Then we focus on
concrete usage recipes for the computation of higher symmetries, conservation laws,
Hamiltonian and recursion operators for polynomial differential equations. All pro-
grams discussed here are shipped together with this manual and can be found at the
GDEQ website. The mathematical theory on which computations are based can be
found in refs. [11, 12].

1. Introduction

This brief guide refers to using CDIFF, a set of symbolic computation packages
devoted to computations in the geometry of DEs and developed by P. Gragert, P.H.M.
Kersten, G. Post and G. Roelofs at the University of Twente, The Netherlands.
Initially, the development of the CDIFF packages was started by Gragert and Kersten

for symmetry computations in DEs, then they have been partly rewritten and extended
by Roelofs and Post. The CDIFF packages consist of 3 program files plus a utility file;
only the main three files are documented [7, 8, 9]. The CDIFF packages, as well as
a copy of the documentation (including this manual) and several example programs,
can be found both at Sourceforge in the sources of REDUCE [1] and in the Geometry
of Differential Equations (GDEQ for short) web site [2]. The name of the packages,
CDIFF, comes from the fact that the package is aimed at defining differential operators
in total derivatives and do computations involving them. Such operators are called
C-differential operators (see [11]).
The main motivation for writing this manual was that REDUCE 3.8 recently became

free software, and can be downloaded here [1]. For this reason, we are able to make
our computations accessible to a wider public, also thanks to the inclusion of CDIFF
in the official REDUCE distribution. The readers are warmly invited to send questions,
comments, etc., both on the computations and on the technical aspects of installation
and configuration of REDUCE, to the author of the present manual.
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2. Installation

In order to use CDIFF packages you should be able to write REDUCE programs using
CDIFF and run them in the REDUCE interactive shell. So, you need two programs:
REDUCE and a text editor which is preferably oriented to program development.

2.1. Installation of REDUCE. In order to install REDUCE it is enough to download
from here [1] a precompiled binary for your operating system (e.g., 32-bit or 64-bit
Debian-based Linux like Debian itself or Ubuntu, 32-bit Windows) and uncompress it
in your computer in a location of your choice.
For the moment CDIFF packages have been tested under Linux (both 32bit and 64bit)

and Windows XP; please contact the author of this guide if you tested the packages
with positive results under Mac or other versions of Windows like Vista or Windows 7.

A REDUCE program using CDIFF packages can be written with any text editor; it is
customary to use the extension .red for REDUCE programs, like program.red. If you
wish to run your program, just run the REDUCE executable. After starting REDUCE,
you would see something like

Reduce (Free CSL version), 14-Apr-09 ...

1:

Assume that you wrote the program program.red, using CDIFF macros. The pro-
gram must contain the line

load_package cdiff;

just before the first macro from the package CDIFF. Then you may run the program
with the following instruction at the REDUCE prompt:

1: in "program.red";

Note that in what follows we will omit the prompt in REDUCE commands.
Of course, if the program file program.red is not in the place where the REDUCE

executable is, you should indicate the full path of the program, and this depends on
your system. Remember that each time you run REDUCE the path at the REDUCE
prompt is always the path of the REDUCE executable, unless you use an absolute path
as above. However, if you start REDUCE with the graphical interface (see below) you
can always use the leftmost menu item File>Open... in order to avoid to write down
the whole absolute path.

2.2. Installation of an editor for writing REDUCE programs. Now, let us deal
with the problem of editing REDUCE programs.



CDIFF USER GUIDE 3

Generally speaking, any text editor can be used to write a REDUCE program. A
more suitable choice is an editor for programming languages. Such editors exist in
Linux and Windows, a list can be found here [4].
A suggested text editor in Windows is notepad++. This editor is easy to install, it

has support for many programming languages (but not for REDUCE!), and has a GPL
free license, see [3]. Similar tools in Linux are kwrite and gedit.
However, the only IDE (Integrated Development Environment) for developing pro-

grams and running them inside the editor itself exists for the great text editor emacs,
which runs in all operating systems, and in particular Linux and Windows. We stress
that an IDE makes the developing-running-debugging cycle much faster because every
step is performed in the same environment.
Installation of emacs in Linux is quite smooth, although it depends on the Linux

distribution; usually it is enough to select the package emacs in your favourite package
management tool, like aptitude, synaptic, or kpackage. In order to install emacs
on Windows one has to work a little bit more. See here [5] for more information.
Assuming that emacs it is installed and working, the REDUCE IDE for emacs can be
found here [10]. We refer to their guide for the installation (the procedure is the same
for both Linux and Windows). I tested the IDE with emacs 23.1 under Debian-based
Linux systems (Debian Etch and Squeeze 32-bit and 64-bit, Ubuntu 10.04 64-bit) and
Windows XP and it works fine for me.

Suppose you have emacs and its REDUCE IDE installed, then there is a last configu-
ration step that will make emacs and REDUCE work together. Namely, when opening
for the first time a REDUCE program file with emacs, go to the REDUCE>Customize...
menu item and locate the ‘REDUCE run Program’ item. This item contains the com-
mand which is issued by emacs from the REDUCE IDE when the menu item Run

REDUCE>Run REDUCE is selected. Change the command to:

• under Linux (user and location as above):

reduce -w

• under Windows (user and locations as above):

reduce.exe

This setting will run REDUCE inside emacs. If you prefer the (slower) graphical inter-
face to REDUCE, remove ‘-w’. Note that the graphical interface will produce LATEX
output, making it much more readable. This behaviour can be turned off in the graph-
ical interface by issuing the command off fancy;.

3. Working with CDIFF

All programs that we will discuss in this manual can be found inside the subfolder
examples in the folder which contains this manual. There are some conventions that I
adopted on writing programs which use CDIFF.

• Program files have the extension .red. This will load automatically the reduce-
ide mode in emacs (provided you made the installation steps described in the
reduce-ide guides).
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• Program files have the following names:

equationname typeofcomputation version.red

where equationname stands for the shortened name of the equation (e.g. Korteweg–
de Vries is always indicated by KdV), typeofcomputation stands for the type of
geometric object which is computed with the given file, for example symmetries,
Hamiltonian operators, etc., version is a version number.

• More specific information, like the date and more details on the computation
done in each version, are included as comment lines at the very beginning of
each file.

If you use a generic editor, as soon as you are finished writing a program, you may
run it from within REDUCE by following the instructions in the previous section.
In emacs with REDUCE IDE it is easier: issuing the command M-x run-reduce (or

choosing the menu item Run REDUCE>Run REDUCE) will split the window in two halves
and start REDUCE in the bottom half. If you are running PSL REDUCE you must
first issue the command lisp set bndstk size 1000000; from within REDUCE, in
order to avoid memory problems. If you are running CSL REDUCE there is no need of
that instruction. Then you may load the program file that you were editing (suppose
that its name is program.red) by issuing in "program.red"; at the REDUCE prompt.
In fact, emacs lets REDUCE assume as its working directory the directory of the file
that you were editing.
Results of a computation consist of the values of one or more unknown. Suppose that

the unknown’s name is sym, and assume that, after a computation, you wish to save
the values of sym, possibly for future use from within REDUCE. Issue the following
REDUCE commands (of course, after you finish your computations!):

off nat;

out file_res.red;

sym:=sym;

shut file_res.red;

The above commands will write the content of sym into a file whose name is file res.red,
where file stands for a filename which follows the above convention. The command
off nat; is needed in order to save the variable in a format which could be imported
in future REDUCE sessions. If you wish to translate your results in LATEX, see the
package rlfi and its own documentation.

4. Computing with CDIFF

Here we describe some examples of computations with CDIFF. The parts of examples
which are shared between all examples are described only once. We stress that all com-
putations presented in this document are included in the official REDUCE distribution
and can be also downloaded at the GDEQ website [2]. The examples can be run with
REDUCE by typing in "program.red"; at the REDUCE prompt, as explained above.
Remark. The mathematical theories on which the computations are based can be

found in [11, 12].
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4.1. Higher symmetries. In this section we show the computation of (some) higher
symmetries of Burgers’equation B = ut − uxx + 2uux = 0. The corresponding file is
Burg hsym 1.red and the results of the computation are in Burg hsym 1 res.red.
The idea underlying this computation is that one can use the scale symmetries of

Burgers’equation to assign “gradings” to each variable appearing in the equation. As a
consequence, one could try different ansatz for symmetries with polynomial generating
function. For example, it is possible to require that they are sum of monomials of given
degrees. This ansatz yields a simplification of the equations for symmetries, because it
is possible to solve them in a “graded” way, i.e., it is possible to split them into several
equations made by the homogeneous components of the equation for symmetries with
respect to gradings.
In particular, Burgers’equation translates into the following dimensional equation:

[ut] = [uxx], [uxx = 2uux].

By the rules [uz] = [u]− [z] and [uv] = [u] + [v], and choosing [x] = −1, we have [u] = 1
and [t] = −2. This will be used to generate the list of homogeneous monomials of given
grading to be used in the ansatz about the structure of the generating function of the
symmetries.
The following instructions initialize the total derivatives. The first string is the name

of the vector field, the second item is the list of even variables (note that u1, u2, ... are
ux, uxx, . . . ), the third item is the list of odd (non-commuting) variables (‘ext’ stands
for ‘external’ like in external (wedge) product). Note that in this example odd variables
are not strictly needed, but it is better to insert some of them for syntax reasons.

super_vectorfield(ddx,{x,t,u,u1,u2,u3,u4,u5,u6,u7,

u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},

{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,ext 10,ext

11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,ext 18,ext 19,ext 20,ext

21,ext 22,ext 23,ext 24,ext 25,ext 26,ext 27,ext 28,ext 29,ext 30,

ext 31,ext 32,ext 33,ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,

ext 41,ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,ext 50,

ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,ext 58,ext 59,ext 60,

ext 61,ext 62,ext 63,ext 64,ext 65,ext 66,ext 67,ext 68,ext 69,ext 70,

ext 71,ext 72,ext 73,ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80

});

super_vectorfield(ddt,{x,t,u,u1,u2,u3,u4,u5,u6,u7,

u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},

{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,ext 10,ext

11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,ext 18,ext 19,ext 20,ext

21,ext 22,ext 23,ext 24,ext 25,ext 26,ext 27,ext 28,ext 29,ext 30,

ext 31,ext 32,ext 33,ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,

ext 41,ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,ext 50,

ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,ext 58,ext 59,ext 60,

ext 61,ext 62,ext 63,ext 64,ext 65,ext 66,ext 67,ext 68,ext 69,ext 70,

ext 71,ext 72,ext 73,ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80

});
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Specification of the vectorfield ddx. The meaning of the first index is the parity of
variables. In particular here we have just even variables. The second index parametrizes
the second item (list) in the super vectorfield declaration. More precisely, ddx(0,1)
stands for ∂/∂x, ddx(0,2) stands for ∂/∂t, ddx(0,3) stands for ∂/∂u, ddx(0,4) stands
for ∂/∂ux, . . . , and all coordinates x, t, ux, . . . , are treated as even coordinates. Note
that ‘$’ suppresses the output.

ddx(0,1):=1$

ddx(0,2):=0$

ddx(0,3):=u1$

ddx(0,4):=u2$

ddx(0,5):=u3$

ddx(0,6):=u4$

ddx(0,7):=u5$

ddx(0,8):=u6$

ddx(0,9):=u7$

ddx(0,10):=u8$

ddx(0,11):=u9$

ddx(0,12):=u10$

ddx(0,13):=u11$

ddx(0,14):=u12$

ddx(0,15):=u13$

ddx(0,16):=u14$

ddx(0,17):=u15$

ddx(0,18):=u16$

ddx(0,19):=u17$

ddx(0,20):=letop$

The string letop is treated as a variable; if it appears during computations it is likely
that we went too close to the highest order variables that we defined in the file. This
could mean that we need to extend the operators and variable list. In case of large
output, one can search in it the string letop to check whether errors occurred.
Specification of the vectorfield ddt. In the evolutionary case we never have more than

one time derivative, other derivatives are utxxx···.

ddt(0,1):=0$

ddt(0,2):=1$

ddt(0,3):=ut$

ddt(0,4):=ut1$

ddt(0,5):=ut2$

ddt(0,6):=ut3$

ddt(0,7):=ut4$

ddt(0,8):=ut5$

ddt(0,9):=ut6$

ddt(0,10):=ut7$

ddt(0,11):=ut8$

ddt(0,12):=ut9$

ddt(0,13):=ut10$
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ddt(0,14):=ut11$

ddt(0,15):=ut12$

ddt(0,16):=ut13$

ddt(0,17):=ut14$

ddt(0,18):=letop$

ddt(0,19):=letop$

sddt(0,20):=letop$

We now give the equation in the form one of the derivatives equated to a right-hand
side expression. The left-hand side derivative is called principal, and the remaining
derivatives are called parametric1. For scalar evolutionary equations with two indepen-
dent variables internal variables are of the type (t, x, u, ux, uxx, . . .).

ut:=u2+2*u*u1;

ut1:=ddx ut;

ut2:=ddx ut1;

ut3:=ddx ut2;

ut4:=ddx ut3;

ut5:=ddx ut4;

ut6:=ddx ut5;

ut7:=ddx ut6;

ut8:=ddx ut7;

ut9:=ddx ut8;

ut10:=ddx ut9;

ut11:=ddx ut10;

ut12:=ddx ut11;

ut13:=ddx ut12;

ut14:=ddx ut13;

Test for verifying the commutation of total derivatives. Highest order defined terms
may yield some letop.

for i:=1:17 do write ev(0,i):=ddt(ddx(0,i))-ddx(ddt(0,i));

This is the list of variables with respect to their grading, starting from degree one.

graadlijst:={{u},{u1},{u2},{u3},{u4},{u5},

{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14},{u15},{u16},{u17}};

This is the list of all monomials of degree 0, 1, 2, . . . which can be constructed from
the above list of elementary variables with their grading.

grd0:={1};

grd1:= mkvarlist1(1,1)$

grd2:= mkvarlist1(2,2)$

grd3:= mkvarlist1(3,3)$

grd4:= mkvarlist1(4,4)$

grd5:= mkvarlist1(5,5)$

grd6:= mkvarlist1(6,6)$

grd7:= mkvarlist1(7,7)$

1This terminology dates back to Riquier, see [13]
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grd8:= mkvarlist1(8,8)$

grd9:= mkvarlist1(9,9)$

grd10:= mkvarlist1(10,10)$

grd11:= mkvarlist1(11,11)$

grd12:= mkvarlist1(12,12)$

grd13:= mkvarlist1(13,13)$

grd14:= mkvarlist1(14,14)$

grd15:= mkvarlist1(15,15)$

grd16:= mkvarlist1(16,16)$

Initialize a counter for the vector of arbitrary constants

ctel:=0;

We assume a generating function sym, independent of x and t, of degree ≤ 5.

sym:=

(for each el in grd0 sum (c(ctel:=ctel+1)*el))+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))+

(for each el in grd4 sum (c(ctel:=ctel+1)*el))+

(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

This is the equation ℓ̄B(sym) = 0, where B = 0 is Burgers’equation and sym is the
generating function. From now on all equations are arranged in a single vector whose
name is equ.

equ 1:=ddt(sym)-ddx(ddx(sym))-2*u*ddx(sym)-2*u1*sym ;

This is the list of variables, to be passed to the equation solver.

vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,

u12,u13,u14,u15,u16,u17};

This is the number of initial equation(s)

tel:=1;

The following procedure uses multi coeff (from the package tools). It gets all
coefficients of monomials appearing in the initial equation(s). The coefficients are put
into the vector equ after the initial equations.

procedure splitvars i;

begin;

ll:=multi_coeff(equ i,vars);

equ(tel:=tel+1):=first ll;

ll:=rest ll;

for each el in ll do equ(tel:=tel+1):=second el;

end;

This command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number of
equations);
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• the list of variables with respect to which the systemmust not split the equations,
i.e., variables with respect to which the unknowns are not polynomial. In this
case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes if
any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions. In
this example there are no free functions, but the command needs the presence
of at least a dummy argument, f in this case. There is also a last zero which is
the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

Run the procedure splitvars in order to obtain equations on coefficiens of each mono-
mial.

splitvars 1;

Next command tells the solver the total number of equations obtained after running
splitvars.

pte tel;

It is worth to write down the equations for the coefficients.

for i:=2:tel do write equ i;

This command solves the equations for the coefficients. Note that we have to skip
the initial equations!

for i:=2:te do es i;

;end;

In the folder computations/NewTests/Higher symmetries it is possible to find the
following files:

Burg hsym 1.red: The above file, together with its results file.
KdV hsym 1.red: Higher symmetries of KdV, with the ansatz: deg(sym) ≤ 5.
KdV hsym 2.red: Higher symmetries of KdV, with the ansatz:

sym = x*(something of degree 3) + t*(something of degree 5)
+ (something of degree 2).

This yields scale symmetries.
KdV hsym 3.red: Higher symmetries of KdV, with the ansatz:

sym = x*(something of degree 1) + t*(something of degree 3)
+ (something of degree 0).

This yields Galilean boosts.

4.2. Local conservation laws. In this section we will find (some) local conservation
laws for the KdV equation F = ut − uxxx + uux = 0. Concretely, we have to find
non-trivial 1-forms f = fxdx + ftdt on F = 0 such that d̄f = 0 on F = 0. “Triviality”
of conservation laws is a delicate matter, for which we invite the reader to have a look
in [11].
The files containing this example is KdV loc-cl 1.red, KdV loc-cl 2.red and the

corresponding results files.
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We make use of ddx and ddt, which in the even part are the same as in the previous
example (subsection 4.1). After defining the total derivatives we prepare the list of
graded variables (recall that in KdV u is of degree 2):

graadlijst:={{},{u},{u1},{u2},{u3},{u4},{u5},

{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14},{u15},{u16},{u17}};

We make the ansatz

fx:=

(for each el in grd0 sum (c(ctel:=ctel+1)*el))+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))$

ft:=

(for each el in grd2 sum (c(ctel:=ctel+1)*el))+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))+

(for each el in grd4 sum (c(ctel:=ctel+1)*el))+

(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

for the components of the conservation law. We have to solve the equation

equ 1:=ddt(fx)-ddx(ft);

the fact that ddx and ddt are expressed in internal coordinates on the equation means
that the objects that we consider are already restricted to the equation.
We shall split the equation in its graded summands with the procedure splitvars,

then solve it

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

splitvars 1;

pte tel;

for i:=2:tel do es i;

end;

As a result we get

fx := c(3)*u1 + c(2)*u + c(1)$

ft := (2*c(3)*u*u1 + 2*c(3)*u3 + c(2)*u**2 + 2*c(2)*u2)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is the total x-derivative of F ; its restriction on the infinite prolongation of
the KdV is zero. Here this fact is evident; how to get rid of less evident trivialities by
an ‘automatic’ mechanism? We considered this problem in the file KdV loc-cl 2.red,
where we solved the equation

equ 1:=fx-ddx(f0);

equ 2:=ft-ddt(f0);

after having loaded the values fx and ft found by the previous program. We make the
following ansatz on f0:

f0:=

(for each el in grd0 sum (cc(cctel:=cctel+1)*el))+

(for each el in grd1 sum (cc(cctel:=cctel+1)*el))+

(for each el in grd2 sum (cc(cctel:=cctel+1)*el))+
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(for each el in grd3 sum (cc(cctel:=cctel+1)*el))$

Note that this gives a grading which is compatible with the gradings of fx and ft.
After solving the system

initialize_equations(equ,tel,{},{cc,cctel,0},{f,0,0});

for i:=1:2 do begin splitvars i;end;

pte tel;

for i:=3:tel do es i;

end;

issuing the commands

fxnontriv := fx-ddx(f0);

ftnontriv := ft-ddt(f0);

we obtain

fxnontriv := c(2)*u + c(1)$

ftnontriv := (c(2)*(u**2 + 2*u2))/2$

This mechanism can be easily generalized to situations in which the conservation laws
which are found by the program are difficult to treat by pen and paper.

4.3. Local Hamiltonian operators. In this section we will find local Hamiltonian op-
erators for the KdV equation ut = uxxx+uux. Concretely, we have to solve ℓ̄KdV (phi) =
0 over the equation

{

ut = uxxx + uux

pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the ℓ∗-covering of the
KdV equation. The reference paper for this type of computations is [12].
The file containing this example is KdV Ham 1.red.
We make use of ddx and ddt, which in the even part are the same as in the previous

example (subsection 4.1). We stress that the linearization ℓ̄KdV (phi) = 0 is the equation

ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)))=0

but the total derivatives are lifted to the ℓ∗ covering, hence they must contain also
derivatives with respect to p’s. This will be achieved by treating p variables as odd and
introducing the odd parts of ddx and ddt,

ddx(1,1):=0$

ddx(1,2):=0$

ddx(1,3):=ext 4$

ddx(1,4):=ext 5$

ddx(1,5):=ext 6$

ddx(1,6):=ext 7$

ddx(1,7):=ext 8$

ddx(1,8):=ext 9$

ddx(1,9):=ext 10$

ddx(1,10):=ext 11$

ddx(1,11):=ext 12$

ddx(1,12):=ext 13$

ddx(1,13):=ext 14$
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ddx(1,14):=ext 15$

ddx(1,15):=ext 16$

ddx(1,16):=ext 17$

ddx(1,17):=ext 18$

ddx(1,18):=ext 19$

ddx(1,19):=ext 20$

ddx(1,20):=letop$

In the above definition the first index ‘1’ says that we are dealing with odd variables,
ext indicates anticommuting variables. Here, ext 3 is p0, ext 4 is px, ext 5 is pxx,
. . . so ddx(1,3):=ext 4 indicates px∂/∂p, etc..
Now, remembering that the additional equation is again evolutionary, we can get rid

of pt by letting it be equal to ext 6 + u*ext 4, as follows:

ddt(1,1):=0$

ddt(1,2):=0$

ddt(1,3):=ext 6 + u*ext 4$

ddt(1,4):=ddx(ddt(1,3))$

ddt(1,5):=ddx(ddt(1,4))$

ddt(1,6):=ddx(ddt(1,5))$

ddt(1,7):=ddx(ddt(1,6))$

ddt(1,8):=ddx(ddt(1,7))$

ddt(1,9):=ddx(ddt(1,8))$

ddt(1,10):=ddx(ddt(1,9))$

ddt(1,11):=ddx(ddt(1,10))$

ddt(1,12):=ddx(ddt(1,11))$

ddt(1,13):=ddx(ddt(1,12))$

ddt(1,14):=ddx(ddt(1,13))$

ddt(1,15):=ddx(ddt(1,14))$

ddt(1,16):=ddx(ddt(1,15))$

ddt(1,17):=ddx(ddt(1,16))$

ddt(1,18):=letop$

ddt(1,19):=letop$

ddt(1,20):=letop$

Let us make the following ansatz about the Hamiltonian operators:

phi:=

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+
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(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6

$

Note that we are looking for generating functions of shadows which are linear with
respect to p’s. Moreover, having set [p] = −2 we will look for solutions of maximal
possible degree +1.
After having set

equ 1:=ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)));

vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13,u14,u15,u16,u17};

tel:=1;

we define the procedures splitvars as in subsection 4.1 and splitext as follows:

procedure splitext i;

begin;

ll:=operator_coeff(equ i,ext);

equ(tel:=tel+1):=first ll;

ll:=rest ll;

for each el in ll do equ(tel:=tel+1):=second el;

end;

Then we initialize the equations:

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

do splitext

splitext 1;

then splitvars

tel1:=tel;

for i:=2:tel1 do begin splitvars i;equ i:=0;end;

Now we are ready to solve all equations:

pte tel;

for i:=2:tel do write equ i:=equ i;

pause;

for i:=2:tel do es i;

end;

Note that we want all equations to be solved!
The results are the two well-known Hamiltonian operators for the KdV:

phi := c(4)*ext(4) + 3*c(3)*ext(6) + 2*c(3)*ext(4)*u + c(3)*ext(3)*u1$

Of course, the results correspond to the operators

ext(4) → Dx,

3*c(3)*ext(6) + 2*c(3)*ext(4)*u + c(3)*ext(3)*u1 → 3Dxxx + 2uDx + ux

Note that each operator is multiplied by one arbitrary real constant, c(4) and c(3).
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4.4. Non-local Hamiltonian operators. In this section we will show an experimental
way to find nonlocal Hamiltonian operators for the KdV equation. The word ‘exper-
imental’ comes from the lack of a consistent mathematical theory. The result of the
computation (without the details below) has been published in [12].
We have to solve equations of the type ddx(ft)-ddt(fx) as in 4.2. The main differ-

ence is that we will attempt a solution on the ℓ∗-covering (see Subsection 4.3). For this
reason, first of all we have to determine covering variables with the usual mechanism of
introducing them through conservation laws, this time on the ℓ∗-covering.
As a first step, let us compute conservation laws on the ℓ∗-covering whose components

are linear in the p’s. This computation can be found in the file KdV nloc-cl 1.red and
related results file. When specifying odd variables in ddx and ddt, we have something
like

ddx(1,1):=0$

ddx(1,2):=0$

ddx(1,3):=ext 4$

ddx(1,4):=ext 5$

ddx(1,5):=ext 6$

ddx(1,6):=ext 7$

ddx(1,7):=ext 8$

ddx(1,8):=ext 9$

ddx(1,9):=ext 10$

ddx(1,10):=ext 11$

ddx(1,11):=ext 12$

ddx(1,12):=ext 13$

ddx(1,13):=ext 14$

ddx(1,14):=ext 15$

ddx(1,15):=ext 16$

ddx(1,16):=ext 17$

ddx(1,17):=ext 18$

ddx(1,18):=ext 19$

ddx(1,19):=ext 20$

ddx(1,20):=letop$

ddx(1,50):=(t*u1+1)*ext 3$ % degree -2

ddx(1,51):=u1*ext 3$ % degree +1

ddx(1,52):=(u*u1+u3)*ext 3$ % degree +3

and

ddt(1,1):=0$

ddt(1,2):=0$

ddt(1,3):=ext 6 + u*ext 4$

ddt(1,4):=ddx(ddt(1,3))$

ddt(1,5):=ddx(ddt(1,4))$

ddt(1,6):=ddx(ddt(1,5))$

ddt(1,7):=ddx(ddt(1,6))$

ddt(1,8):=ddx(ddt(1,7))$

ddt(1,9):=ddx(ddt(1,8))$
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ddt(1,10):=ddx(ddt(1,9))$

ddt(1,11):=ddx(ddt(1,10))$

ddt(1,12):=ddx(ddt(1,11))$

ddt(1,13):=ddx(ddt(1,12))$

ddt(1,14):=ddx(ddt(1,13))$

ddt(1,15):=ddx(ddt(1,14))$

ddt(1,16):=ddx(ddt(1,15))$

ddt(1,17):=ddx(ddt(1,16))$

ddt(1,18):=letop$

ddt(1,19):=letop$

ddt(1,20):=letop$

ddt(1,50):=f1*ext 3+f2*ext 4+f3*ext 5$

ddt(1,51):=f4*ext 3+f5*ext 4+f6*ext 5$

ddt(1,52):=f7*ext 3+f8*ext 4+f9*ext 5$

The variables corresponding to the numbers 50,51,52 here play a dummy role, the
coefficients of the corresponding vector are the unknown generating functions of con-
servation laws on the ℓ∗-covering. More precisely, we look for conservation laws of the
form

fx= phi*ext 3

ft= f1*ext3+f2*ext4+f3*ext5

The ansatz is chosen because, first of all, ext 4 and ext 5 can be removed from fx by
adding a suitable total divergence (trivial conservation law); moreover it can be proved
that phi is a symmetry of KdV. We can write down the equations

equ 1:=ddx(ddt(1,50))-ddt(ddx(1,50));

equ 2:=ddx(ddt(1,51))-ddt(ddx(1,51));

equ 3:=ddx(ddt(1,52))-ddt(ddx(1,52));

However, the above choices make use of a symmetry which contains ‘t’ in the generator.
This would make automatic computations more tricky, but still possible. In this case
the solution of equ 1 has been found by hand and passed to the program:

f3:=t*u1+1$

f1:=u*f3+ddx(ddx(f3))$

f2:=-ddx(f3)$

together with the ansatz on the coefficients for the other equations

f4:=(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

f5:=(for each el in grd4 sum (c(ctel:=ctel+1)*el))$

f6:=(for each el in grd3 sum (c(ctel:=ctel+1)*el))$

f7:=(for each el in grd7 sum (c(ctel:=ctel+1)*el))$

f8:=(for each el in grd6 sum (c(ctel:=ctel+1)*el))$

f9:=(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

The previous ansatz keep into account the grading of the starting symmetry in phi*ext

3. The resulting equations are solved in the usual way (see the example file).
Now, we solve the equation for shadows of nonlocal symmetries in a covering of the

ℓ∗-covering. We can choose between three new nonlocal variables ra,rb,rc. We are



16 R. VITOLO

going to look for non-local Hamiltonian operators depending linearly on one of these
variables. Higher non-local Hamiltonian operators could be found by introducing total
derivatives of the r’s. As usual, the new variables are specified through the components
of the previously found conservation laws according with the rule

ra_x=fx, ra_t=ft,

and analogously for the others. We define

ddx(1,50):=(t*u1+1)*ext 3$ % degree -2

ddx(1,51):=u1*ext 3$ % degree +1

ddx(1,52):=(u*u1+u3)*ext 3$ % degree +3

and

ddt(1,50) := ext(5)*t*u1 + ext(5) - ext(4)*t*u2 + ext(3)*t*u*u1 +

ext(3)*t*u3 + ext(3)*u$

ddt(1,51) := ext(5)*u1 - ext(4)*u2 + ext(3)*u*u1 + ext(3)*u3$

ddt(1,52) := ext(5)*u*u1 + ext(5)*u3 - ext(4)*u*u2 - ext(4)*u1**2 -

ext(4)*u4 + ext(3)*u**2*u1 + 2*ext(3)*u*u3 + 3*ext(3)*u1*u2 + ext(3)*u5$

as it results from the computation of the conservation laws. The following ansatz for the
nonlocal Hamiltonian operator comes from the fact that local Hamiltonian operators
have gradings −1 and +1 when written in terms of p’s. So we are looking for a nonlocal
Hamiltonian operator of degree 3.

phi:=

(for each el in grd6 sum (c(ctel:=ctel+1)*el))*ext 50+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 51+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 52+

(for each el in grd5 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd4 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 6+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 7+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 8

$

As a solution, we obtain

phi := c(1)*(ext(51)*u1 - 9*ext(8) - 12*ext(6)*u - 18*ext(5)*u1 -

4*ext(4)*u**2 - 12*ext(4)*u2 - 4*ext(3)*u*u1 - 3*ext(3)*u3)$

where ext51 stands for the nonlocal variable rb fulfilling

rb_x:=u1*ext 3$

rb_t:=ext(5)*u1 - ext(4)*u2 + ext(3)*u*u1 + ext(3)*u3$

Remark. In the file KdV nloc-Ham 2.red it is possible to find another ansatz for a
non-local Hamiltonian operator of degree +5.
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4.5. Computations for systems of PDEs. There is no conceptual difference when
computing for systems of PDEs. We will look for Hamiltonian structures for the follow-
ing Boussinesq equation:

(1)

{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

where σ is a constant. This example also shows how to deal with jet spaces with more
than one dependent variable. Here gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = [
∂

∂u
] = −2, [q] = [

∂

∂v
] = −1

where p, q are the two coordinates in the space of generating functions of conservation
laws.
The linearization of the above system and its adjoint are, respectively

ℓBou =

(

Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)

, ℓ∗
Bou

=

(

−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)

and lead to the ℓ∗
Bou

covering equation














−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find shadows of symmetries on the above covering. Total derivatives must
be defined as follows:

super_vectorfield(ddx,{x,t,u,v,u1,v1,u2,v2,u3,v3,u4,v4,u5,v5,u6,v6,u7,

v7,u8,v8,u9,v9,u10,v10,u11,v11,u12,v12,u13,v13,u14,v14,u15,v15,

u16,v16,u17,v17},

{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,ext 10,ext

11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,ext 18,ext 19,ext 20,ext

21,ext 22,ext 23,ext 24,ext 25,ext 26,ext 27,ext 28,ext 29,ext 30,

ext 31,ext 32,ext 33,ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,

ext 41,ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,ext 50,

ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,ext 58,ext 59,ext 60,

ext 61,ext 62,ext 63,ext 64,ext 65,ext 66,ext 67,ext 68,ext 69,ext 70,

ext 71,ext 72,ext 73,ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80

});

super_vectorfield(ddt,{x,t,u,v,u1,v1,u2,v2,u3,v3,u4,v4,u5,v5,u6,v6,u7,

v7,u8,v8,u9,v9,u10,v10,u11,v11,u12,v12,u13,v13,u14,v14,u15,v15,

u16,v16,u17,v17},

{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,ext 10,ext

11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,ext 18,ext 19,ext 20,ext

21,ext 22,ext 23,ext 24,ext 25,ext 26,ext 27,ext 28,ext 29,ext 30,

ext 31,ext 32,ext 33,ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,

ext 41,ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,ext 50,

ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,ext 58,ext 59,ext 60,



18 R. VITOLO

ext 61,ext 62,ext 63,ext 64,ext 65,ext 66,ext 67,ext 68,ext 69,ext 70,

ext 71,ext 72,ext 73,ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80

});

In the list of coordinates we alternate derivatives of u and derivatives of v. The same
must be done for coefficients; for example,

ddx(0,1):=1$

ddx(0,2):=0$

ddx(0,3):=u1$

ddx(0,4):=v1$

ddx(0,5):=u2$

ddx(0,6):=v2$

...

After specifying the equation

ut:=u1*v+u*v1+sig*v3;

vt:=u1+v*v1;

we define the (already introduced) time derivatives:

ut1:=ddx ut;

ut2:=ddx ut1;

ut3:=ddx ut2;

...

vt1:=ddx vt;

vt2:=ddx vt1;

vt3:=ddx vt2;

...

up to the required order (here the order can be stopped at 15). Odd variables p and
q must be specified with an appropriate length (here it is OK to stop at ddx(1,36)).
Recall to replace pt, qt with the internal coordinates of the covering:

ddt(1,1):=0$

ddt(1,2):=0$

ddt(1,3):=+v*ext 5+ext 6$

ddt(1,4):=u*ext 5+sig*ext 9+v*ext 6$

ddt(1,5):=ddx(ddt(1,3))$

...

The list of graded variables:

graadlijst:={{v},{u,v1},{u1,v2},{u2,v3},{u3,v4},{u4,v5},

{u5,v6},{u6,v7},{u7,v8},{u8,v9},{u9,v10},{u10,v11},{u11,v12},{u12,v13},

{u13,v14},{u14,v15},{u15,v16},{u16,v17},{u17}};

The ansatz for the components of the Hamiltonian operator is

phi1:=

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
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$

phi2:=

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4

$

and the equation for shadows of symmetries is

equ 1:=ddt(phi1)-v*ddx(phi1)-v1*phi1-u1*phi2-u*ddx(phi2)

-sig*ddx(ddx(ddx(phi2)));

equ 2:=-ddx(phi1)-v*ddx(phi2)-v1*phi2+ddt(phi2);

After the usual procedures for decomposing polynomials we obtain the following result:

phi1 := c(6)*ext(6)$

phi2 := c(6)*ext(5)$

which corresponds to the vector (Dx, Dx). Extending the ansatz to

phi1:=

(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 7+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 9+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 6+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 8

$

phi2:=

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 7+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6

$

allows us to find a second (local) Hamiltonian operator

phi1 := (c(3)*(2*ext(9)*sig + ext(6)*v + 2*ext(5)*u + ext(3)*u1))/2$

phi2 := (c(3)*(2*ext(6) + ext(5)*v + ext(3)*v1))/2$

There is one more higher local Hamiltonian operator, and a whole hierarchy of nonlocal
Hamiltonian operators [12].

4.6. Explosion of denominators and how to avoid it. Here we propose the com-
putation of the repeated total derivative of a denominator. This computation fills up
the whole memory after some time, and can be used as a kind of speed test for the
system. The file is KdV denom 1.red.
After having defined total derivatives on the KdV equation, run the following itera-

tion:
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phi:=1/(u3+u*u1)$

for i:=1:100 do begin

phi:=ddx(phi)$

write i;

end;

The program shows the iteration number. At the 18th iteration the program uses about
600MB of RAM, as shown by top run from another shell, and 100% of one processor.
There is a simple way to avoid denominator explosion. The file is KdV denom 2.red.
After having defined total derivatives with respect to x (on the KdV equation, for

example) consider in the same ddx a component with a sufficently high index imme-

diately after ‘letop’ (otherwise super vectorfield does not work!), say ddx(0,21),
and think of it as being the coefficient to a vector of the type

aa21:=1/(u3+u*u1);

In this case, its coefficient must be

ddx(0,21):=-aa21**2*(u4+u1**2+u*u2)$

More particularly, here follows the detailed definition of ddx

ddx(0,1):=1$

ddx(0,2):=0$

ddx(0,3):=u1$

ddx(0,4):=u2$

ddx(0,5):=u3$

ddx(0,6):=u4$

ddx(0,7):=u5$

ddx(0,8):=u6$

ddx(0,9):=u7$

ddx(0,10):=u8$

ddx(0,11):=u9$

ddx(0,12):=u10$

ddx(0,13):=u11$

ddx(0,14):=u12$

ddx(0,15):=u13$

ddx(0,16):=u14$

ddx(0,17):=u15$

ddx(0,18):=u16$

ddx(0,19):=u17$

ddx(0,20):=letop$

ddx(0,21):=-aa21**2*(u4+u1**2+u*u2)$

Now, suppose that we want to compute the 5th total derivative of phi. Write the
following code:

phi:=aa30;

for i:=1:5 do begin

phi:=ddx(phi)$

write i;

end;
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The result is then a polynomial in the additional ‘denominator’ variable

phi := aa21**2*( - 120*aa21**4*u**5*u2**5 - 600*aa21**4*u**4*u1**2*u2**4 - 600*

aa21**4*u**4*u2**4*u4 - 1200*aa21**4*u**3*u1**4*u2**3 - 2400*aa21**4*u**3*u1**2*

u2**3*u4 - 1200*aa21**4*u**3*u2**3*u4**2 - 1200*aa21**4*u**2*u1**6*u2**2 - 3600*

aa21**4*u**2*u1**4*u2**2*u4 - 3600*aa21**4*u**2*u1**2*u2**2*u4**2 - 1200*aa21**4

*u**2*u2**2*u4**3 - 600*aa21**4*u*u1**8*u2 - 2400*aa21**4*u*u1**6*u2*u4 - 3600*

aa21**4*u*u1**4*u2*u4**2 - 2400*aa21**4*u*u1**2*u2*u4**3 - 600*aa21**4*u*u2*u4**

4 - 120*aa21**4*u1**10 - 600*aa21**4*u1**8*u4 - 1200*aa21**4*u1**6*u4**2 - 1200*

aa21**4*u1**4*u4**3 - 600*aa21**4*u1**2*u4**4 - 120*aa21**4*u4**5 + 240*aa21**3*

u**4*u2**3*u3 + 720*aa21**3*u**3*u1**2*u2**2*u3 + 720*aa21**3*u**3*u1*u2**4 +

240*aa21**3*u**3*u2**3*u5 + 720*aa21**3*u**3*u2**2*u3*u4 + 720*aa21**3*u**2*u1**

4*u2*u3 + 2160*aa21**3*u**2*u1**3*u2**3 + 720*aa21**3*u**2*u1**2*u2**2*u5 + 1440

*aa21**3*u**2*u1**2*u2*u3*u4 + 2160*aa21**3*u**2*u1*u2**3*u4 + 720*aa21**3*u**2*

u2**2*u4*u5 + 720*aa21**3*u**2*u2*u3*u4**2 + 240*aa21**3*u*u1**6*u3 + 2160*aa21

**3*u*u1**5*u2**2 + 720*aa21**3*u*u1**4*u2*u5 + 720*aa21**3*u*u1**4*u3*u4 + 4320

*aa21**3*u*u1**3*u2**2*u4 + 1440*aa21**3*u*u1**2*u2*u4*u5 + 720*aa21**3*u*u1**2*

u3*u4**2 + 2160*aa21**3*u*u1*u2**2*u4**2 + 720*aa21**3*u*u2*u4**2*u5 + 240*aa21

**3*u*u3*u4**3 + 720*aa21**3*u1**7*u2 + 240*aa21**3*u1**6*u5 + 2160*aa21**3*u1**

5*u2*u4 + 720*aa21**3*u1**4*u4*u5 + 2160*aa21**3*u1**3*u2*u4**2 + 720*aa21**3*u1

**2*u4**2*u5 + 720*aa21**3*u1*u2*u4**3 + 240*aa21**3*u4**3*u5 - 60*aa21**2*u**3*

u2**2*u4 - 90*aa21**2*u**3*u2*u3**2 - 120*aa21**2*u**2*u1**2*u2*u4 - 90*aa21**2*

u**2*u1**2*u3**2 - 780*aa21**2*u**2*u1*u2**2*u3 - 180*aa21**2*u**2*u2**4 - 60*

aa21**2*u**2*u2**2*u6 - 180*aa21**2*u**2*u2*u3*u5 - 120*aa21**2*u**2*u2*u4**2 -

90*aa21**2*u**2*u3**2*u4 - 60*aa21**2*u*u1**4*u4 - 1020*aa21**2*u*u1**3*u2*u3 -

1170*aa21**2*u*u1**2*u2**3 - 120*aa21**2*u*u1**2*u2*u6 - 180*aa21**2*u*u1**2*u3*

u5 - 120*aa21**2*u*u1**2*u4**2 - 540*aa21**2*u*u1*u2**2*u5 - 1020*aa21**2*u*u1*

u2*u3*u4 - 360*aa21**2*u*u2**3*u4 - 120*aa21**2*u*u2*u4*u6 - 90*aa21**2*u*u2*u5

**2 - 180*aa21**2*u*u3*u4*u5 - 60*aa21**2*u*u4**3 - 240*aa21**2*u1**5*u3 - 990*

aa21**2*u1**4*u2**2 - 60*aa21**2*u1**4*u6 - 540*aa21**2*u1**3*u2*u5 - 480*aa21**

2*u1**3*u3*u4 - 1170*aa21**2*u1**2*u2**2*u4 - 120*aa21**2*u1**2*u4*u6 - 90*aa21

**2*u1**2*u5**2 - 540*aa21**2*u1*u2*u4*u5 - 240*aa21**2*u1*u3*u4**2 - 180*aa21**

2*u2**2*u4**2 - 60*aa21**2*u4**2*u6 - 90*aa21**2*u4*u5**2 + 10*aa21*u**2*u2*u5 +

20*aa21*u**2*u3*u4 + 10*aa21*u*u1**2*u5 + 110*aa21*u*u1*u2*u4 + 80*aa21*u*u1*u3

**2 + 160*aa21*u*u2**2*u3 + 10*aa21*u*u2*u7 + 20*aa21*u*u3*u6 + 30*aa21*u*u4*u5

+ 50*aa21*u1**3*u4 + 340*aa21*u1**2*u2*u3 + 10*aa21*u1**2*u7 + 180*aa21*u1*u2**3

+ 60*aa21*u1*u2*u6 + 80*aa21*u1*u3*u5 + 50*aa21*u1*u4**2 + 60*aa21*u2**2*u5 +

100*aa21*u2*u3*u4 + 10*aa21*u4*u7 + 20*aa21*u5*u6 - u*u6 - 6*u1*u5 - 15*u2*u4 -

10*u3**2 - u8)$

where the value of aa21 can be replaced back in the expression.
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