
Core Library Tutorial

Chen Li, Chee Yap, Sylvain Pion, Zilin Du and Vikram Sharma

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

New York, NY 10012, USA

Nov 12, 2004†

Abstract

The Core Library is a collection of C++ classes to support numerical computations that have
a variety of precision requirements. In particular, it supports the Exact Geometric Computa-
tion (EGC) approach to robust algorithms. The implementation embodies our precision-driven
approach to EGC. The library is designed to be extremely easy to use. Any C++ programmer
can immediately transform a “typical” geometric application program into fully robust code,
without needing to transform the underlying program logic. This tutorial gives an overview of
the Core Library, and basic instructions for using it.

Section Contents Page
1 Introduction 2
2 Getting Started 3
3 Expressions 8
4 Numerical Precision and Input-Output 9
5 Polynomials and Algebraic Numbers 15
6 Converting Existing C/C++ Programs 16
7 Using CORE with CGAL 19
8 Efficiency Issues 19
9 Core Library Extensions 23
10 Miscellany 23
11 Bugs and Future Work 24

Appendix A CORE Classes Reference 25
Appendix B Sample Program 49
Appendix C Brief History 50

References 51

†Revised: Jan 18, 1999; Sep 9, 1999; Aug 15, 2000; Sep 1, 2001; Jul 29, 2002; Jun 20, 2003; Nov 12, 2004. This
work has been funded by NSF Grants #CCR-9402464, #CCF-0430836, and NSF/ITR Grant #CCR-0082056.

1

1 Introduction

In programs such as found in engineering and scientific applications, one can often identify
numerical variables that require more precision than is available under machine arithmetic1.
But one is also likely to find other variables that need no more than machine precision. E.g.,
integer variables used as array indices or for loop control. The Core Library is a collection of
C++ classes to facilitate numerical computation that desire access to a variety of such precision
requirements. Indeed, the library even supports variables with irrational values (e.g.,

√
2) and

allows exact comparisons with them.
Numerical non-robustness of programs is a widespread phenomenon, and is clearly related

to precision issues. Two recent surveys are [15, 21]. Non-robustness is particularly insidious in
geometric computation. What distinguishes “geometric computation” from general “numerical
computation” is the appearance of discrete or combinatorial structures, and the need to main-
tain consistency requirements between the numerical values and these structures [21]. Our
library was originally designed to support the Exact Geometric Computation (EGC) approach
to robust geometric computation [19, 22]. The EGC approach is one of the many routes that
researchers have taken towards addressing non-robustness in geometric computation. Recent
research in the computational geometry community has shown the effectiveness of EGC in
specific algorithms such as convex hulls, Delaunay triangulation, Voronoi diagram, mesh gen-
eration, etc [7, 6, 9, 5, 1, 16]. But programmers cannot easily produce such robust programs
without considerable effort. A basic goal of our project is to create a tool that makes EGC
techniques accessible to all programmers. Through the Core Library, any C/C++ programmer
can now create robust geometric programs without any special knowledge of EGC or other ro-
bustness techniques. The Core Library, because of its unique numerical capabilities, has other
applications beyond EGC. An example is in automatic theorem proving in geometry [17].

A cornerstone of our approach is to define a simple and yet natural numerical accuracy
API (Application Program Interface). The Core Library defines four accuracy levels to meet
a user’s needs:

Machine Accuracy (Level 1) This may be identified with the IEEE Floating-Point Stan-
dard 754.

Arbitrary Accuracy (Level 2) Users can specify any desired accuracy in term of the num-
ber of bits used in the computation. E.g., “200 bits” means that the numerical operations
will not cause an overflow or underflow until 200 bits are exceeded.

Guaranteed Accuracy (Level 3) Users can specify the absolute or relative precision that
is guaranteed to be correct in the final results. E.g., “200 relative bits” means that the
first 200 significant bits of a computed quantity are correct.

Mixed Accuracy (Level 4) Users can freely intermix the various precisions at the level of
individual variables. This level is not fully defined, and only a primitive form is currently
implemented.

Level 3 is the most interesting, and constitute the critical capability of EGC. Level 2 is
essentially the capability found in big number package, and in computer algebra systems such
as Maple or Mathematica. There is a fundamental gap between Levels 2 and 3 that may not
be apparent to the casual user.

1In current computers, this may be identified with the IEEE 754 Standard.

2

One design principle in our library is that a CORE program should be able to compile and
run at any of the four accuracy levels. We then say that the program can “simultaneously”
access the different levels. The current library development has focused mostly2 on Levels 1
and 3. As a result of the simultaneous access design, CORE programs can be debugged and run
at various levels as convenient. E.g., to test the general program logic, we debug at Level 1,
but to check the numerical computation, we debug at Level 3, and finally, we may choose to
run this program at Level 2 for a speed/accuracy trade-off.

The mechanism for delivering these accuracy levels to a program aims to be as transparent
as possible. In the simplest situation, the user begins with a “standard” C++ program, i.e., a
C++ program that does not refer to any CORE-specific functions or classes. We call this a Level
1 program. Then the user can invoke Core Library’s numerical capabilities just by inserting
the line #include "CORE/CORE.h" into the program, and compiling in the normal way. In
general, a key design objective is to reduce the effort for the general programmer to write new
robust programs, or to convert existing non-robust programs into robust ones.

It should be evident that if an “ordinary” C++ program is to access an accuracy level greater
than 1, its basic number types must be re-interpreted and overloading of arithmetic operators
must be used. In Level 2, the primitive types double and long are re-interpreted to refer to
the classes BigFloat and BigInt, respectively. Current implementation encloses these values
inside a number type Real. In Level 3, both double and long refer to the class Expr. Think
of an instance of the Expr class as a real number which supports exact (error-less) operations
with +,−,×,÷ and

√
, and also exact comparisons. Each instance of Expr maintains an

approximate value as well as a precision. The precision is an upper bound on the error in
the approximate value. Users can freely modify this precision, and the approximate value will
automatically adjust itself. When we output an Expr instance, the current approximate value
is printed.

Our work is built upon the Real/Expr Package of Yap, Dubé and Ouchi [22]. The
Real/Expr Package was the first system to achieve Level 3 accuracy in a general class of
non-rational expressions. The most visible change in the transition to Core Library is our new
emphasis on ease-of-use. The CORE accuracy API was first proposed by Yap [18]. An initial
implementation was described by Karamcheti et al [8]. At about the same time, Burnikel et
al [2] introduced the leda real Library that is very similar to Level 3 of our library.

The library has been extensively tested on the Sun UltraSPARC, Intel/Linux and Windows
platforms. The main compiler for development is GNU’s g++. The base distribution for Version
1.7 is less than 800 KB, including source, extensions and examples. The full distribution,
which includes documentation and GMP, is less than 4MB. It can be freely downloaded from
our project homepage

http://cs.nyu.edu/exact/core.

This tutorial has been updated for Core Library, Version 1.7, released on August 15, 2004.

2 Getting Started

Installing the Core Library. The CORE distribution file is called core vX.Y.Z.tgz,
where X.Y.Z denotes the library version. Thus, for the initial version 1.7, we have X.Y.Z =

2Level 1 effort simply amounts to ensuring that a Level 3 program can run at Level 1 as well. A “Level 3 program”
is one that explicitly use classes or functions that are specific to Level 3.

3

1.7.0. Assume that the distribution file has been downloaded into some directory ${INSTALL PATH}.
In Unix, you can extract the files as follows:

% cd ${INSTALL PATH}
% gzip -cd core vX.Y.Z.tgz | tar xvf -

where % is the Unix prompt. This creates the directory core vX.Y containing all the directo-
ries and files. Let ${CORE PATH} be the full path name of this newly created directory: thus
${CORE PATH} expands to ${INSTALL PATH}/core vX.Y. The Core Library directory structure
is as follows:

${CORE PATH}/doc: Documentation
${CORE PATH}/inc: The header files
${CORE PATH}/src: Source code for the Core Library
${CORE PATH}/lib: The compiled libraries are found here
${CORE PATH}/ext: Extensions for linear algebra and geometry, etc
${CORE PATH}/progs: Demo programs using the Core Library
${CORE PATH}/tmp: Temporary directory
${CORE PATH}/win32: Director for Windows files
${CORE PATH}/gmp: gmp installation directory (may be a link)

The link ${CORE PATH}/gmp is not present after unpacking, but will be created in the first
three steps of the installation below. The README file in ${CORE PATH} describes the easy steps
to compile the library, which are as follows:

% cd ${CORE_PATH}

% make first // determine system configurations for gmp

% make second // make gmp libraries

% make third // install gmp

% make testgmp // check if gmp is properly installed

% make fourth // make core library, extensionns, demo programs

% make fifth // run sample programs

These five steps are equivalent to a simple “make all”. The first make will determine the
system configurations (platform, compilers, available files, etc). This information is needed for
building the GMP library, which is the object of the second make. These first two makes are the
most expensive of the installation, taking between 10–30 minutes depending on the speed of
your machine. But you can skip these steps in subsequent updates or recompilation of the Core
Library. The third make will install the gmp library. Before the fourth make, we do a simple
check to see if gmp has been properly installed (“make testgmp”). The fourth make is equiva-
lent to three separate makes, corresponding to the following targets: corelib, corex, demo.
Making corelib creates the core library, that is, it compiles the files in ${CORE PATH}/src
resulting in the file libcore++.a which is then placed in ${CORE PATH}/lib. Make corex cre-
ates the Core Library extensions (COREX’s), resulting in the files libcorex++ level*.a being
placed in ${CORE PATH}/lib. Note that we currently create levels 1, 2 and 3 of the COREX.
Make demo will compile all the sample programs in ${CORE PATH}/progs. The fifth make will
test all the sample programs. The screen output of all the above makes are stored in corre-
sponding files in ${CORE PATH}/tmp. An optional “make sixth” will run the fifth test with
a single timing number. The above steps assume that you downloaded the full distribution
(with GMP). Variant installations (e.g., for a base distribution, without GMP) is described in the
README file.

4

Programming with the Core Library. It is simple to use the Core Library in your
C/C++ programs. There are many sample programs and Makefiles under ${CORE PATH}/progs.
These could be easily modified to compile your own programs. A simple scenario is when you
already have a working C++ program which needs to be converted to a CORE program. The
following 2 steps may suffice:

1. Modifying your program: add one or two instructions as preamble to your program.
First, use a define statement to set the CORE accuracy level:

#define CORE_LEVEL <level_number> // this line can be omitted when

// using the default value 3.

Here <level number> can be 1, 2, 3 or 4. Next, include the Core Library header file
CORE.h (found in ${CORE PATH}/inc)

#include "CORE/CORE.h"

To avoid potential name conflict, all header files are stored under ${CORE PATH}/inc/CORE3

This include line should appear before your code which utilizes Core Library arithmetic,
but after any needed the standard header files, e.g. <fstream>. Note that CORE.h already
includes the following:

<cstdlib>, <cstdio>, <cmath>, <cfloat>, <cassert>, <cctype>,

<climits>, <iostream>, <iomanip>, <sstream>, <string>.

2. Quick start to compiling and running your own programs. When compiling, make sure
that ${CORE PATH}/inc and ${CORE PATH}/gmp/include are among the include paths
(specified by the -I compiler flag) for compiling the source. When linking, you must spec-
ify the libraries from CORE and GMP and the standard math library m, using the -l flag.
You also need to use the -L flag to place ${CORE PATH}/lib and ${CORE PATH}/gmp/lib
among the library paths. E.g., to compile the program foo.cpp, type:

% g++ -c -I${CORE PATH}/inc -I${CORE PATH}/gmp/include foo.cpp -o foo.o

% g++ -o foo -L${CORE PATH}/lib -L${CORE PATH}/gmp/lib -lcore++ -lgmp -lm

in this order.

The easy way to use the Core Library is to take advantage of the Core Library directory
structure. This can be seen in how we compile all the demo programs. First, create your own
directory under ${CORE PATH}/progs and put your program foo.cpp there. Then copy one of
the Makefiles in ${CORE PATH}/progs. E.g., ${CORE PATH}/progs/generic/Makefile. You
can modify this make file to suit your needs. To compile foo.cpp, just modify the Makefile
by adding the following line as a new target:

foo: foo.o

To compile your program, you simple type “make foo” in this directory. The examples in this
tutorial are found in ${CORE PATH}/progs/tutorial/.

3Before Core Library 1.6, header files were in ${CORE PATH}/inc. For backward compatibility, you still can use
#include "CORE.h"

5

Namespace CORE. The library uses its own namespace called CORE. Therefore classes
and functions of CORE are accessible by explicitly prefixing them by CORE::. E.g., CORE::Expr.
You can also use the global statement :

using namespace CORE;

In fact, this is automatically added by the include file CORE.h unless the compilation flag
CORE NO AUTOMATIC NAMESPACE is defined.

Basic Numerical Input-Output. Input and output of literal numbers come in three
basic formats: scientific format (as in 1234e-2), positional format (as in 12.34), or rational
format (as in 1234/100). Scientific and positional can be mixed (as in 1.234e-1) and will
be collectively known as the “approximate number format”. It is recognized by the presence
of an “e” or a radical point. In contrast, the rational format is known as “exact number
format”, and is indicated by the presence of a “/”. For I/O purposes, a plain integer 1234 is
regarded as a special case of the rational format. Input and output of exact numbers is pretty
straightforward, but I/O of approximate numbers can be subtle.

For output of approximate numbers, users can choose either scientific or positional for-
mat, by calling the methods setScientificFormat() or setPositionalFormat(), respec-
tively. The output precision is manipulated using the standard C++ stream manipulator
setprecision(int). The initial default is equivalent to

setprecision(6); setPositionalFormat();

Note that the term “precision” in C++ streams is not consistent with our use of the term
(see Section 4). In our terminology, precision are measured in “bits”, while input or output
representation are in “decimal digits”. In contrast, precision in C++ streams refers to decimal
digits.

Expr e1 = 12.34; // constructor from C++ literals

Expr e = "1234.567890"; // constructor from string

// The precision for reading inputs is controlled by defInputDigits

// This value is initialized to be 16 (digits).

cout << e << endl;

// prints 1234.57 as the output precision defaults to 6.

cout << setprecision(10) << e << endl; // prints 1234.567890

cout << setprecision(11) << e << endl; // prints 1234.5678900

setScientificFormat();

cout << setprecision(6) << e << endl; // prints 1.23457e+4

Program 1

Program 1 uses Expr for illustrating the main issues with input and output of numerical
values. But all CORE number classes will accept string inputs as well. Of course, in Level 3,
Expr will be our main number type.

For input of approximate numbers, two issues arise. As seen in Program 1, expression
constructors accept two kinds of literal number inputs: either standard C++ number literals

6

(e.g., 12.34, without any quotes) or strings (e.g., "1234.567890"). You should understand
that the former is inherently inexact: E.g., 12.34 has no exact machine double representation,
and you are relying on the compiler to convert this into machine precision. Integers numbers
with too many digits (more than 16 digits) cannot be represented by C++ literals. So users
should use string inputs to ensure full control over input precision, to be described next.

Yet another issue is the base of the underlying natural numbers, in any of the three formats.
Usually, we assume base 10 (decimal representation). However, for file I/O (see below) of large
numbers, it is important to allow non-decimal representations.

I/O streams understand expressions (Expr). The output precision in both scientific and
positional formats is equal to the number of digits which is printed, provided there are that
many correct digits to be printed. This digit count does not include the decimal point, the “e”
indicator or the exponent value in scientific format. But the single 0 before a decimal point is
counted.

In two situations, we may print less than the maximum possible: (a) when the approximate
value of the expression does not have that many digits of precision, and (b) when the exact
output does not need that many digits. In any case, all the output digits are correct except
that the last digit may be off by ±1. Note that 19.999 or 20.001 are considered correct outputs
for the value 20, according to our convention. But 19.998 or 20.002 would not qualify. Of
course, the approximate value of the expression can be improved to as many significant digits
as we want – we simply have to force a re-evaluation to the desired precision before output.

Three simple facts come into play when reading an approximate number format into internal
representation: (1) We normally prefer to use floating point in our internal representation, for
efficiency. (2) Not all approximate number formats can be exactly represented by a floating
point representation when there is a change of base. (3) Approximate number format can
always be represented exactly by a big rational.

We use the value of the global variable defInputDigits to determine the precision for
reading literal input numbers. This variable can be set by calling the function
setDefaultInputDigits(extLong). Here, the class extLong is basically a wrapper around
the machine long type which supports special values such as +∞, denoted by CORE INFTY. If
the value of defInputDigits is +∞, then the literal number is internally represented without
error, as a rational number if necessary. If defInputDigits is a finite integer m, then we
convert the input string to a BigFloat whose value has absolute error at most 10−m, which in
base 10 means the mantissa has m digits. The initial default value of defInputDigits is 16.

A Simple Example. Consider a simple program to compare the following two expressions,
numerically:

√
x +

√
y :

√
x + y + 2

√
xy.

Of course, these expressions are algebraically identical, and hence the comparison should result
in equality regardless of the values of x and y. Running the following program in level 1 will
yield incorrect results, while level 3 is always correct.

7

#ifndef CORE LEVEL

define CORE LEVEL 3

#endif

#include "CORE/CORE.h" // this must come after the standard headers

int main() {
setDefaultInputDigits(CORE INFTY);

double x = "12345/6789"; // rational format

double y = "1234567890.0987654321"; // approximate format

double e = sqrt(x) + sqrt(y);

double f = sqrt(x + y + 2 * sqrt(x*y));

std::cout << "e == f ? " << ((e == f) ?

"yes (CORRECT!)" :

"no (ERROR!)") << std::endl;

}

Program 2

Terminology. We use the capitalized “CORE” as a shorthand for “Core Library” (e.g., a
CORE program). Note that “Core” is not an abbreviation; we chose this name to suggest its
role as the “numerical core” for robust geometric computations.

3 Expressions

The most interesting part of the Core Library is its notion of expressions, embodied in the
class Expr. This is built on top of the class Real, which provides a uniform interface to the
following subtypes of real numbers:

int, long, float, double, BigInt, BigRat, BigFloat.
Instances of the class Expr can be thought of as algebraic expressions built up from instances
of Real and also real algebraic numbers, via the operators +,−,×,÷ and

√
. Among the

subtypes of Real, the class BigFloat, has a unique and key role in our system, as the provider
of approximate values. It has an additional property not found in the other Real subtypes,
namely, each BigFloat keeps track of an error bound, as explained next.

The simplest use of our library is to avoid explicit references to these classes (Expr, Real,
BigFloat). Instead use standard C++ number types (int,long,float,double) and run the
program in level 3. Nevertheless, advanced users may find it useful to directly program with
our number types. Appendix A serves as a reference for these classes.

Level 2 and Level 3 numbers. There are two inter-related concepts in the Core Library:
precision and error. One may view them as two sides of the same coin – a half-empty cup
versus a half-full cup. Within our library, they are used in a technical sense with very different
meanings. Let f be an instance of the class BigFloat, and e be an instance of the class Expr.
We call f a “Level 2 number” and e a “Level 3 number”. Basically, we can compute with

8

Level 2 numbers4 to any desired error bound. But unlike Level 3 numbers, Level 2 numbers
cannot guarantee error-less results. The instance f has a nominal value Valf (a real number)
as well as an error bound Errf . One should interpret Errf as an upper bound on the difference
between Valf and some “actual value”. The instance f does not know the “actual value”, so
one should just view f as the interval Valf ± Errf . But a user of Level 2 numbers may be
able to keep track of this “actual value” and thus use the interval properly. Indeed, Level 3
numbers uses Level 2 numbers in this way.

The idea of Level 3 numbers is novel, and was first introduced in our Real/Expr package
[22]. The expression e also has a value Vale which is exact5. Unfortunately, the value Vale is in
the mathematical realm (R) and not directly accessible. Hence we associate with e two other
quantities: a precision bound Prece and an approximation Approxe. The library guarantees
that the approximation error |Approxe −Vale| is within the bound Prece. The nature of Prece

will be explained in the next section. What is important is that Prece can be freely set by the
user, but the approximation Approxe is automatically computed by the system. In particular,
if we increase the precision Prece, then the approximation Approxe will be automatically
updated if necessary.

In contrast to Prece, the error bound Errf should not be freely changed by the user. This
is because the error is determined by the way that f was derived, and must satisfy certain
constraints (basically it is the constraints of interval arithmetic). For instance, if f = f1 + f2

then the error bound in f is essentially6 determined by the error bounds in f1 and f2. Thus,
we say that error bounds are a posteriori values while precision bounds are a priori values.

Error-less Comparisons. While we can generate arbitrarily accurate approximations to
a Level 3 number, this does not in itself allow us to do exact comparisons. When we compare
two numbers that happen to be equal, generating increasingly accurate approximations can
only increase our confidence that they are equal, but never tell us that they are really equal.
Thus, there is a fundamental gap between Level 2 and Level 3 numbers. To be able to tell when
two Level 3 numbers are equal, we need some elementary theory of algebraic root bounds [20].
This is the basis of the Exact Geometric Computation (EGC) approach to non-robustness.

4 Numerical Precision and Input-Output

Numerical input and output may be subtle, but they should never be ambiguous in our system.
A user should know how input numbers are read, but also know how to interpret the output
of numbers.

For instance, confusion may arise from the fact that a value may be exactly represented
internally, even though its printout is generally an approximation. Thus, the exact represen-
tation of

√
2 is available internally in some form, but no printout of its approximate numerical

value can tell you that it is really
√

2. For this, you need to do a comparison test.
NOTE: Precision is always given in base 10 or base 2. Generally, we use base 2 for in-

ternal precision, and use base 10 for I/O precision. CORE has various global variables such as
defAbsPrec and defInputDigits that controls precision in one way or other. Our naming

4Level 2 numbers ought to refer to any instance of the class Real, if only they all track an error bound as in the
case of the BigFloat subtype. Future implementations may have this property.

5And real, for that matter.
6In operations such as division or square roots, exact results may not be possible even if the operands have no

error. In this case, we rely on some global parameter to bound the error in the result.

9

convention for such variables tells you which base is used: precision variables in base 10 have
the substring Digit, while precision variables in base 2 have the substring Prec.

The Class of Extended Longs. For programming, we introduce an utility class called
extLong (extended long) which is useful for expressing various bounds. In our system, they are
used not only for specifying precision bounds, but also root bounds as well. Informally, extLong
can be viewed as a wrapper around machine long and which supports the special values of
+∞,−∞ and NaN (“Not-a-Number”). These values are named extLong::CORE posInfty,
extLong::CORE negInfty and extLong::CORE NaN, respectively. For convenience, CORE INFTY

is defined to be extLong::CORE posInfty. The four arithmetic operations on extended longs
will never lead to exceptions such as overflows or divide-by-zero7 or undefined values. This is
because such operations can be detected and given the above special values. A user may use
and assign to extLong’s just as they would to machine long’s.

Relative and Absolute Precision. Given a real number X, and integers a and r, we
say that a real number X̃ is an approximation of X to (composite) precision [r, a], denoted

X̃ ≃ X [r, a] ,

provided either ∣∣∣X̃ − X
∣∣∣ ≤ 2−r |X| or

∣∣∣X̃ − X
∣∣∣ ≤ 2−a.

Intuitively, r and a bound the number of “bits” of relative and absolute error (respectively)
when X̃ is used to approximate X. Note that we use8 the “or” semantics (either the absolute
“or” relative error has the indicated bound). In the above notation, we view the combination
“X[r, a]” as the given data (although X is really a black-box, not an explicit number repre-
sentation) from which our system is able to generate an approximation X̃ . For any given data
X[r, a], we are either in the “absolute regime” (if 2−a ≥ 2−r|X|) or in the “relative regime” (if
2−a ≤ 2−r|X|).

To force a relative precision of r, we can specify a = ∞. Thus X[r,∞] denotes any X̃

which satisfies
∣∣∣X̃ − X

∣∣∣ ≤ 2−r |X|. Likewise, if X̃ ≃ X[∞, a] then X̃ is an approximation of

X to the absolute precision a, |X̃ − X| ≤ 2−a.
In implementation, r and a are extLong values. We use two global variables to specify the

global composite precision:
[defRelPrec, defAbsPrec]. (1)

It has the default value [60, CORE INFTY]. The user can change these values at run time by
calling the functions:

long setDefaultRelPrecision(extLong r); // returns previous value

long setDefaultAbsPrecision(extLong a); // returns previous value

void setDefaultPrecision(extLong r, extLong a);

7To delay the onset of overflows, it may be useful to extend extLong to implement a form of level arithmetic.
E.g., when a value overflows machine long, we can keep track of log2 of its magnitude, etc.

8Jerry Schwarz, “A C++ library for infinite precision floating point” (Proc. USENIX C++ Conference, pp.271–
281, 1988) uses the alternative “and” semantics.

10

How does the default precision in 1 control your computation? Say you perform arithmetic
operations such as z = x/y; The system will ensure that the computed value of z satisfies the
relation z∼ x/y[defRelPrec, defAbsPrec].

Sometimes, we want to control this precision for individual variables. If e is an Expr,
the user can invoke e.approx(rel, abs) where rel, abs are extended longs representing
the desired composite precision. The returned value is a Real instance that satisfies this
requested precision. If approx is called without any arguments, it will use the global values
[defRelPrec, defAbsPrec].

In Section 2 (“Getting Started”), we gave the basics for numerical input and output. In
particular, we have 3 formats: positional (e.g., 3.14159), scientific (e.g., 314159 e-5), or
rational (e.g., 314159/100000). These formats can be read as a C++ literal or as a string. But
there are important differences related to precision.

Precision of Numerical Input. Consider the following input of numerical values:

Expr e = 0.123; // position format in machine literal

Expr f = "0.123"; // positional format in string

Expr g = 123e-3; // scientific format in machine literal

Expr h = "123e-3"; // scientific format in string

Expr i = 12.3e-2; // mixed format in machine literal

Expr j = "12.3e-2"; // mixed format in string

The input for expressions e, g and i are C++ number literals, and you may expect some
error when converted into the internal representation. But the relative error of the internal
representation is at most 2−53, assuming the IEEE standard. In contrast, the values of the ex-
pressions f,h and j are controlled by the global variable defInputDigits. If defInputDigits
has the value CORE INFTY then f,h and j will have the exact rational value 123/1000. Oth-
erwise, they will be represented by BigFloat numbers whose absolute error is at most 10−m

where m = defInputDigits.
Instead of using constructors, we can also read input numbers from streams. E.g.,

Expr k;

cin >> k;

In this case, the input number literals are regarded as strings, and so the value of the variable
k is controlled by defInputDigits.

Precision of Numerical Output. Stream output of expressions is controlled by the
precision variable stored in the stream cout. Output will never print inaccurate digits, but
the last printed digit may be off by ±1. Thus, an output of 1.999 may be valid when the exact
value is 2, 1.998, 1.9988 or 1.9998. But this output is invalid when the exact value is 1.99
(since the last digit in 1.999 is misleading) or 2.01. Similarly, an output of 1.234 is invalid
when the exact value is 1.2 or 1.23.

Output Number Formats. We have two formats for approximate numbers: scientific
and positional. But even when positional format is specified, under certain circumstances, this
may be automatically overridden, and the scientific format used. For instance, if the output

11

precision is 3 and the number is 0.0001 then a positional output would be 0.00. In this case,
we will output in scientific format as 1.00e-4 instead. Again, if the number is an integer 1234,
then we will output in scientific format as 1.23e+3. In both cases, we see why the positional
output (restricted to 3 digits) is inadequate and the scientific format (also restricted to 3 digits)
is more accurate. See Appendix A.1.6 for details.

One issue in numerical output is how to tell the users whether there is any error in an
output or not. For instance, if you print the value of Expr("1.0"), you may see a plain 1.

(and not 1.0). It is our way of saying that this value is exact. But if you print the value of
Expr(1.0), you may be surprised to see 1.0000. Why the difference? Because in the former
case, the internal representation is a BigRat while in the latter case is a machine double. The
latter is inherently imprecise and so we print as many digits as the current output precision
allows us (in this case 5 digits). But in printing a BigRat we do not add terminal 0’s.

Interaction of I/O parameters. It should be clear from the preceding that the param-
eters defRelPrec, defAbsPrec, defInputDigits, and (stream) output precision interact with
each other in determining I/O behavior:

setScientificFormat();

setDefaultInputDigits(2); // defInputDigits = 2

Expr X = "1234.567890";

cout << setprecision(6); // output precision = 6

cout << X << endl; // prints .123457e+4

cout << setprecision(10) << X << endl; // prints .1234567871e+4

cout << setprecision(100) << X << endl; // prints .123456787109375000e+4

Program 3

Note that since the input precision is set to 2, the internal value of X is an approximation
to 1234.567890 with an error at most 10−2. Thus the second output of X printed some
“wrong digits”. In particular, the output 1234.567871 contains 8 correct digits. However,
notice that our semantic guarantees only 6 correct digits – so this output has given us 2
“bonus digits”. In general, it is difficult to predict how many bonus digits we may get. Our
convention for expressions is that all leaves are error-free and thus the output may appear
strange (although it is not wrong). In fact, if we set the output precision to 100, we see that
expression X is assigned the exact value of 1234.56787109375000 (we know this because this
output was terminated prematurely before reaching 100 digits). To force exact input, you
must set defInputDigits to +∞:

12

setScientificFormat();

setDefaultInputDigits(CORE INFTY);

Expr X = "1234.567890"; // exact input

cout << setprecision(6) << X << endl; // prints .123457e+4

cout << setprecision(10) << X << endl; // prints .1234567890e+4

cout << setprecision(100) << X << endl; // prints .1234567889999999999e+4

X.approx(CORE INFTY, 111); // enough for 33 digits.

cout << setprecision(33) << X << endl;

// prints 33 digits: .123456789000000000000000000000000e+4

Program 4

Output Stream Precision. Besides the output precision parameters for BigFloat, the
above examples illustrate yet another parameter that controls output: namely the output
precision parameter that is associated with output streams such as cout. This parameter as
set using the standard setprecision(int) method of output streams. Core provides another
way to do this, which is currently not entirely consistent with setprecision(int) method.
Namely, you can call the method setDefaultOutputDigits(long p) method. This method
will perform the equivalent of setprecision(p), but in addition updates the global parameter
defOutputDigits to p. It returns the previous value of defOutputDigits. The initial default
value of defOutputDigits is 10.

Output for Exact and Inexact BigFloat Values. A BigFloat is represented by a
triple of integers (man, exp, err) where man is the mantissa, exp the exponent and err the
error. This represents an interval (man±err)×Bexp where B = 2−14 is the base. When err =
0, we say the BigFloat value is exact and otherwise inexact. For efficiency, we normalize error
so that 0 ≤ err ≤ B. Since we do not want to show erroneous digits in the output, the presence
of error (err > 0) is important for limiting the number of BigFloat output digits. To illustrate
this, suppose B = 2 instead of 214 and our BigFloat is x = (man, exp, err) = (10,−5, 0),
written here with decimal integers. Then cout << setprecision(6) << x will show 0.3125.
In general, we expect such a floating point number to have an error Bexp = 2−5 = 0.03125.
Then x = 0.3125± 0.03125. This suggests that we should not output beyond the first decimal
place. To ensure this behavior, we can simply set the error component to 1. The method to
call is x.makeInexact(), and as a result x becomes (man, exp, err) = (10,−5, 1). Now, cout
<< setprecision(6) << x will output only 0.3. There is a counterpart x.makeExact() that
makes err = 0. The Section on Efficiency Issues has related information on this.

Connection to Real Input/Output. Expression constructor from strings and stream
input of expressions are derived from the Real constructor from strings. See Appendix A.2.1
and A.2.5 for more details. On the other hand, stream output of expressions is derived from
the output of BigFloat values. See Appendix A.1.6 for this.

String and File I/O. Instead of input/output from/to a stream, we can also input/output
from/to a string. The methods are called toString and fromString. These methods are
available for the number classes BigFloat, BigInt, and BigRat. For Real and Expr we only

13

have the method toString. In place of fromString, you can directly assign (=) a string to
Real and Expr variables.

The directory ${CORE PATH}/progs contains examples of both string and file I/O.
The need to read very large numbers from files, and to write them into files, is important

for certain computations. Moreover, base for representing these numbers in files should be
flexible enough to support standard bases for big integers (base 2, 10 and 16). Such a format
is specified in ${CORE PATH}/progs/fileIO. In particular, this format assumes that files are
ascii based, for flexibility and human readability. Four basic formats are defined:

Integer, Float, Normalized Float (NFloat) and Rational.

The following methods are available:

void BigInt::read from file(istream is, long maxLen = 0)

void BigInt::write to file(ostream os, int base = 10, long lineLen = 70)

void BigFloat::read from file(istream is, long maxLen = 0)

void BigFloat::write to file(ostream os, int base = 10, long lineLen = 70)

void BigRat::read from file(istream is, long maxLen = 0)

void BigRat::write to file(ostream os, int base = 10, long lineLen = 70)

There are two bases in the representation of a BigFloat, the base of the mantissa and the
base for raising the exponent. We call these the “mantissa base” and the “exponent base”. We
view BigInt as having only a mantissa base. In the above arguments, base is the mantissa
base. The exponent base is defaulted to the internal base representation used by our BigFloat
class (which is 214). Also maxLen indicates the number of bits (not “digits” of the input file
base) to be read from the input file. The default value of maxLen = 0 means we read all the
available bits. The lineLen tells us how many digits should be written in each line of the
mantissa. Note that when we read into a BigFloat and the base is 10, then this may incur
an approximation but the error is guaranteed to be smaller than half a unit in the last digit.

Conversion to Machine Double. This is strictly speaking not a numerical I/O issue,
but one of inter-conversion among number types. Such details are described under individual
number classes (Appendix A). However, the conversion of our internal numbers into machine
double values is an important topic that merits a place here.

All our number classes has a doubleValue() method to convert its value to one of the
two nearest machine representable double value. For instance, if e is an expression, we can
call e.doubleValue() a machine double value. We do not guaranteed rounding to nearest
but that this value is one of the two closest machine doubles (either ceiling or floor). See
${CORE PATH}/progstestSqrt.cpp for some discussion of the conversion errors. It is also
useful to convert an exact value into an interval defined by two machine doubles. The method
Expr::doubleInterval() does this.

It is important to realize that all these conversions to machine doubles may overflow or
underflow. It is the user’s to check for this possibility. The function int finite(double) can
be used for this check: it returns a zero if its argument does not represent a finite double value
(i.e., the argument is either NaN or infinity).

14

5 Polynomials and Algebraic Numbers

Beginning in Version 1.6, we introduce arbitrary real algebraic numbers into expressions. For
example, suppose we want to define the golden ratio φ = 1.618033988749894 It can
be defined as the unique positive root of the polynomial P (X) = X2 − X − 1. We have a
templated (univariate) polynomial class named Polynomial<NT>where NT is a suitable number
type to serve as the type of the coefficients in the polynomial. We allow NT to be BigInt, Expr,
BigFloat, BigRat, long or int. Some Polynomial methods may not be meaningful or obvious
for certain choices of NT. For instance, many polynomial operations such as polynomial GCD
depend on the concept of divisibility in NT. But the notion of divisibility for BigFloat values
may not be so obvious (but see Appendix A under BigFloat). For BigRat, we may take the
position that divisibility is the trivial relation (every nonzero value can divide other values).
But this will not be our definition. For long and int, clearly coefficients may overflow.
We regard BigInt as the “canonical” number type for polynomial coefficients because all
polynomial methods will be fairly clear in this case. Hence, our polynomial examples will
usually take NT=BigInt.

First consider how to input polynomials. There is an easy way to input such a polynomial,
just as the string "x^2 - x - 1". Currently, the coefficients from string input are assumed
to be BigInt. A slower way (which may be more appropriate for large polynomials) is to
construct an array of its coefficients.

typedef BigInt NT;

typedef Polynomial<NT> PolyNT;

NT coeffs[] = {-1, -1, 1}; // coeffs[i] is the coefficient of Xi

PolyNT P(2, coeffs); // P = X2 − X − 1
PolyNT Q = "x^2-x-1"; // Q = X2 − X − 1

We use the polynomial P to define an Expr whose value is φ. There are two ways to identify
φ as the intended root of P: we can say φ is the i-th smallest root of P (where i = 2) or we can
give a BigFloat interval I = [1, 2] that contains φ as the unique root of P. We may call the
arguments i = 2 or I= [1.0, 2.0] the root indicators for the polynomial P. The other root of P
is φ′ = 1 − φ, and it has the root indicators i = 1 or I = [-1.0, 0.0].

Expr phi1 = rootOf(P, 2); // phi1 is the 2nd smallest root of P

BFInterval I(-1.0, 0.0); // I is the interval [-1, 0]

Expr phi2 = rootOf(P, I); // phi2 is the unique negative root of P

Expr Phi2 = rootOf(P, -1, 0); // Alternative

To test that phi1 and phi2 have the correct values, we can use the fact that φ + φ′ = 1.
This is done in the next code fragment.

Alternatively, we can use the fact that φ and φ′ are still quadratic numbers, and we could
have obtained these values by our original sqrt operators, e.g., φ = (1 +

√
5)/2. However,

we offer a convenient alternative way to get square roots, by using the radical operator. In
general, radical(n, m) gives the m-th root of the number n. Compared to the Version 1.6 the
current version can handle any positive number type (BigInt, Expr, BigFloat, etc.) for n.

15

if (phi1 + phi2 == 1) cout << "CORRECT!" << endl;

else cout << "ERROR!" << endl;

Expr goldenRatio = (1 + radical(5,2))/2: // another way to specify phi

if (phi1 == goldenRatio) cout << "CORRECT!" << endl;

else cout << "ERROR!" << endl;

Program 5

Recall that the constructible reals are those real numbers that can be obtained from the
rational operations and the square-root operation. The new constructors rootOf and radical

can give rise to numbers which are not constructible reals.
It is possible to construct invalid Expr when we specify an inappropriate root indicator:

when i is larger than the number of real roots in the polynomial P, or when I contains no
real roots or contains more than one real root of P. We can generalize this by allowing root
indicators that are negative integers: if i is negative, we interpret this to refer to the (−i)-th
largest real root. E.g., if i is −2, then we want the 2nd largest real root. Moreover, we allow
i to be 0, and this refers to the smallest positive root. When the root indicator is completely
omitted, it defaults to this special case.

To support these methods, we define the Sturm class that implements Sturm techniques
and Newton iterations. For more details, see Appendix A.4 (Polynomials) and Appendix A.5
(Sturm).

Beyond univariate polynomials. In Version 1.7, we introduce bivariate polynomials as
well as algebraic curves. We provided basic functionality for doing arithmetic on curves as well
as graphical display functions (based on openGL) are available. These may be found under
${CORE PATH}/progs/curves.

6 Converting Existing C/C++ Programs

Most of the following rules are aimed at making a Level 1 program compile and run at Level
3. So, this section might also be entitled “How to make your C/C++ program robust”.

1. There is a fundamental rule for writing programs that intend to call the Core Library:
all arithmetic operations and comparisons should assume error-free results. In other
words, imagine that you are really operating on members of the mathematical domain
R of real numbers, and operations such as +,−,×,÷,

√
return exact (error-free) results.

Unfortunately, programs in conventional programming language that have been made
“numerically robust” often apply tricks that violate this rule. Chief among these tricks
is epsilon-tweaking. Basically this means that all comparisons to zero are replaced by
comparison to some small, program-dependent constant (“epsilon”). There may be many
such “epsilons” in the program. This is a violation of our fundamental rule.

Perhaps the simplest way to take care of this is to set these epsilons to 0 when in Level
3. There is only one main concern here. When comparing against such epsilons, most
programmers do not distinguish between “≤” and “<”. Often, they exclusively use “<”
or “>” in comparisons against an epsilon. E.g., “|x| < ε” is taken as equivalent to x = 0.

16

If you now set ε to 0 in level 3, it is clear that you will never succeed in this test. Note
that in C/C++ the usual function for absolute value is fabs(x). This function will also
work correctly in Level 3.

2. In your code that follows the preamble

#define CORE_LEVEL 3

#include "CORE/CORE.h"

you must remember that the built-in machine types double and long will be replaced by
(i.e., promoted to) the class Expr. An analogous promotion occurs at Level 2. If you do
not want such promotions to occur, be sure to use machine double and machine long

instead of double and long, respectively.

If you are including a standard library, it is important to ensure that such promotions
are not applied to your library. An example is the standard C++ library <fstream>,
when you need to perform file I/O in a CORE program. Therefore such libraries should
be placed before the inclusion of CORE.h.

3. All objects implicitly (e.g. automatically promoted from double) or explicitly declared
to be of type Expr must be initialized appropriately. In most cases, this is not a problem
since a default Expr constructor is defined. Expr objects which are dynamically allocated
using malloc() will not be initialized properly. You should use the new operator of C++
instead.

double *pe, *pf;

// The following is incorrect at Levels 2 and 3:

pe = (double *)malloc(sizeof(double));

cout << *pe << endl;

// prints: Segmentation fault

// because the object *pe was not initialized properly

// This is the correct way:

pf = new double();

cout << *pf << endl;

// prints "0" (the default value)

4. The system’s built-in printf and scanf functions cannot be used to output/input the Expr
objects directly. You need to use C++ stream I/O instead.

double e = sqrt(double(2));

cout << e << endl; // this outputs 1.4142... depending on current

// output precision and default precision for evaluation

cin >> e; // reads from the standard input.

Since we can construct Expr objects from strings, you can use scanf to read a string
value which is then assigned to the Expr object. Unfortunately, current implementation
does not support the use of printf.

17

char s[255];

scanf("%s", s);

double e = s;

5. Variables of type int or float are never promoted to Expr objects. For example,

// set Level 3

int i = 2;

double d = sqrt(i);

double dd = sqrt(2);

The two sqrt operations here actually refer to the standard C function defined in math.h,
and not our exact sqrt found in the Expr class. Hence d and dd both hold only a fixed
approximation to

√
2. The exact value can not be recovered. Here is a fix:

// set Level 3

int i = 2;

double e = i; // promote i to an Expr object

double d = sqrt(e); // the exact sqrt() is called.

double dd = sqrt(Expr(2)); // the exact sqrt() is called.

Users may work around this problem by defining the following macro :

#define sqrt(x) sqrt(Expr(x))

CORE does not define this since it may be risky for some programs.

6. In Level 3, constant literals (e.g., 1.3) or constant arithmetic expressions (e.g., 1/3) are
not promoted. Hence they may not give exact values. This can cause some surprises:

double a = 1.0/3; // the value of a is an approximation to 1/3

double b = 1.3; // the value of b is also approximate

// To input the exact value of 1/3, do this instead:

double c = BigRat(1, 3); // sure way to get exact value of 1/3

double d = "1/3"; // sure way to get exact value of 1/3

double e = "1.3"; // the global defInputDigits should be

// +∞ in order for e to be exact.

Program 6

7. Note that since all the double and long variables would be promoted to Expr class during
the C/C++ preprocessing, certain C/C++ semantics does not work in Level 3 anymore. For
example, a typical C/C++ idiom is the following:

double e;

if (e) { ... }

18

The usual semantics of this code says that if the value of e is not zero, then do Since
e is now an Expr object, you should write instead:

double e;

if (e != 0) { ... }

8. Use of standard mathematical functions can be handled in two ways. Note that such
functions are typically those found in math.h. Among these functions, only sqrt() is
fully supported in Level 3. The other functions such as sin(), cos(), exp(), log(), etc,
are not available in Level 3. If your program uses these functions, you can invoke the
functions of math.h by explicitly converting any Level 3 number to machine double as
argument:

double e = sqrt(2);

double s = sin(e.doubleValue()); // this invokes sin() in math.h

Thus we invoke the Expr::doubleValue() method to get a machine double value be-
fore calling the sine function. All our number types have an equivalent doubleValue()

methods. The second way to call these mathematical functions is to use our hypergeo-
metric package which computes these functions to any desired absolute precision. These
functions are found under ${CORE PATH}/progs/hypergeom.

7 Using CORE and CGAL

The CGAL library (Computational Geometry Algorithm Library, www.cgal.org) provides a
rich set of geometric primitives and algorithms. These primitives and algorithms are all
parametrized (templated) to receive a variety of number types. In particular, you can use
CORE number types. We recommend using Level 4, and that you directly plug CORE::Expr as
template parameter of any CGAL kernel :

#include <CGAL/Cartesian.h> // From CGAL

#include "CGAL Expr.h" // From CORE

typedef CGAL::Cartesian<CORE::Expr> Kernel;

...

CORE provides some additional functions in the file inc/CGAL Expr.h, which are required by
CGAL, so you should include this file in your program. This file sets the Level to 4 and includes
CORE.h. Some example programs may be found under ${CORE PATH}/progs/cgal. Core
Library is also distributed under CGAL by Geometry Factory, the company that distributes
commercial licenses for CGAL components.

8 Efficiency Issues

A Level 3 CORE program can be much less efficient than the corresponding Level 1 program.
This applies to efficiency in terms of time as well as space. First, Level 3 arithmetic and

19

comparison can be arbitrarily slower than the corresponding Level 1 operations. This is often
caused by root bounds which may be far from optimal. Second, Expr objects can be arbitrarily
larger in size than the corresponding machine number representation.

This inefficiency is partly inherent, the overhead of achieving robustness in your code. But
sometimes, part of this overhead not inherent, but caused by the way your code is structured.
Like any library, Core Library gives you the freedom to write arbitrarily inefficient programs. In
programming languages too, you can also write inefficient code, except that modern optimizing
compilers can detect common patterns of suboptimal code and automatically fix it. This is
one of our research goals for Core Library. But until now, automatic optimization has not
been our primary focus. This forces users to exercise more care. The following are hints and
tools in Core Library that may speed up your code. Level 3 is assumed in the following.

Ways to Speed Up your code.

• Share subexpressions. This requires developing an awareness of how expressions are
built up, and their dependency structure. Thus, in comparing E1 =

√
x +

√
y with

E2 =
√

x + y + 2
√

xy (they are equal for all x, y), you could share the
√

x and
√

y in E1

and E2 as follows:

double x, y, sqrtx, sqrty;

cin >> x; cin >> y; // read from std input

sqrtx = sqrt(x); sqrty = sqrt(y);

double E1 = sqrtx + sqrty;

double E2 = sqrt(x + y + 2*sqrtx * sqrt y);

if (E1 == E2) cout << "CORRECT!" << endl;

else cout << "ERROR!" << endl;

See prog12.cpp in in ${CORE PATH}/progs/tutorial some timings for shared and non-
shared versions of this example.

• Avoid divisions in your expressions if possible. Note that input numbers that are not
integers are rational numbers, and they implicitly invoke division. But a special class
of rational numbers, the k-ary numbers (typically, k = 2 or 10) can be quite effectively
handled using some new techniques based on the so-called “k-ary root bounds”. CORE

Version 1.5 has implemented such binary root bounds (k = 2).

• Be aware that a high algebraic degree can be expensive. But it is just as important to
realize that high algebraic degree by itself is not automatically a problem. You can add
a hundred positive square roots of integers, and this algebraic number may have degree
up to 2100:

Expr s = 0;

for (int i=1; i<=100; i++) s += sqrt(Expr(i));

You can easily evaluate this number s, for example. But you will encounter trouble when
trying to compare to such numbers that happen to be identical.

• Sometimes, use of expressions are unnecessary. For instance, consider9 a piece of code

9We are grateful for this example from Professor Siu-Weng Cheng. In his example, the points pi are 3-dimensional
points on the surface of a unit sphere, which has been computed. So the coordinates of pi are complex expressions
involving square roots. Since we are sure to have a true equality comparison in this application, the resulting code
was extremely slow using the known root bounds, circa year 2000.

20

which iterates over members of a circular list of points until it reaches the starting
member. If the circular list is (p1, p2, . . . , pn), and you start at some point q = pi in this
list, you would normally think nothing of checking if q = pj to check if the entire list has
been traversed. But this can be very inefficient. In this case, you should simply compare
indexes (check if i = j), as this does not involve expressions.

• Avoid unbounded depth expressions. A well-known formula [12] for the signed area of a
simple polygon P is to add up the signed areas of each triangle in any triangulation of P .
If P has n points, you would end up with an expression of depth Ω(n). If n is large, you
will end up with stack overflow. Even if there is no overflow, comparing this expression to
zero (to get its sign) may be too slow. This example arises in an actual10 software called
FIST (“Fast Industrial-Strength Triangulation’). FIST is routinely tested on a database
of over 5000 test polygons, some of which have up to 32,000 points. FIST uses the above
formula for signed area, and this is too slow for Core Library (version 1.5) on 32,000
points (but 16,000 points can be handled). Although it is possible to avoid computing
the signed area when the input polygon is simple, the signed area heuristic is critical for
achieving the “industrial strength” properties of FIST. That is, the signed area approach
allows FIST to produce reasonable triangulations even for “dirty data” (such as non-
simple polygons). One solution in this case is to compute the signed area approximately.
In fact, machine precision approximation is sufficient here. If more precision is needed,
we can use Level 2 numbers (BigFloat).

• Sometimes, BigFloat can be an adequate substitute for expressions. For instance, if you
are computing very high precision approximations of a number, or maintaining isolation
intervals of a number you should use BigFloat for this purpose. For examples, see our
implementation of Sturm sequences in the distribution. Here are some useful tips. First,
it is important to know that BigFloat carries an error bound, and you should probably
set this error to zero in such applications. Otherwise, this error propagates and you loose
more precision than you might think. For this purpose, the following methods are useful
to know: If x is a BigFloat variable, you can find out the error bits in x by calling
x.err(). You can test if the error in x is 0 by calling x.isExact(), and if you want to
set this error to zero, call x.makeExact(). Sometimes, you need upper or lower bounds
on the interval represented by an inexact BigFloat value. In this case, you can call
makeCeilExact() or makeFloorExact().

On the other hand, the inverse method x.makeInexact() will set the error to 1. This is
useful for preventing garbage digits from being printed. For more information, see the
file BF output.cpp in the tutorial directory.

Such error bits are positively harmful for self-correcting algorithms such as Newton itera-
tion – they may even prevent Newton iteration from converging. Note that the expression
x/2 may not return an exact BigFloat value even if x is exact. If you want exact result,
you must call the method x.div2(). This is useful when you use the BigFloat values for
interval refinement.

To get your initial BigFloat value, one often computes an expression e and then call
e.getBigFloat() to get its current BigFloat approximation.

See Appendix A.1.7 for more information.

• A huge rational expression can always be replaced by an expression with just one node.
This reduction is always carried out if a global Boolean variable called rationalReduceFlag

10We are grateful to Professor Martin Held for this example.

21

is set to true. You can set this flag by calling setRationalReduceFlag(bool), which
returns the previous value of the flag. For instance, when this flag is true, the time to run
“make test” for CORE 1.5 programs takes 1 minute 46.4 seconds; when this flag is false,
the corresponding time is 35.9 seconds. Hence we do not automatically turn on this flag.
On the other hand, setting this flag to true can convert an infeasible computation into a
feasible one. Prior to CORE 1.6, the pentagon test (progs/pentagon/pentagon.cpp) is
an infeasible computation unless we use the escape precision mechanism (see below). But
with this flag set to true, this test is instantaneous. Another more significant example is
Martin Held’s FIST program – without this flag, his program will not run with 3D data
sets, crashing because of stack size problems.

The Problem of Inexact Inputs. A fundamental assumption in EGC is that inputs
are exact. Even when the application does not care for exactness, we must treat the input
as “nominally exact”. This assumption may fail for some Level 1 programs. Handling such
conversions will depend on the application, so it is best to illustrate this. An example is the
FIST software above. Although the basic FIST software is for triangulating a 2-dimensional
polygon, it is also able to triangulate a 3-dimensional polygon P : FIST will first find the normal
of P and then project P along this normal to the xy-plane. The problem is thus reduced to
triangulating a 2-dimensional polygon. In practice, the vertices of P are unlikely to lie in a
plane. Hence, the “normal” of P is undefined. Instead, FIST computes the average normal
for each triple of successive vertices of P . The algorithm will further sort the coordinates
of the projected points in order to remove duplicate points. This sorting turns out to be
extremely expensive in the presence of duplicates (since in this case, the root bounds of the
huge expressions determine the actual complexity). In fact, FIST could not handle this data
under CORE 1.5. It turns out that if we apply the simple heuristic (within CORE) of reducing
all rational expressions into a single node, the above data could be processed by FIST without
any change in their code, albeit very slowly. This heuristic is available from CORE 1.6 onwards.

As an industrial strength software, FIST must introduce such heuristics to handle inexact
data. To greatly improve the speed of FIST it probably best to change the logic of its code.
For instance, we suggest converting the average normal into an approximate floating point
representation. If we further want to preserve the principle that “exact inputs should produce
exact solutions”, then we can further make FIST to first check that P is actually planar. If
so, the normal can be determined from any three non-collinear vertices and hence completely
avoid large expressions. Otherwise, it can use the approximate floating point representation.

Precision Escape Mechanism. It is useful to have an escape mechanism to intervene
when a program does not return because of high precision. This is controlled by the following
two global variables with default values:

extLong EscapePrec = CORE INFTY;

long EscapePrecFlag = 0;

When EscapePrec = CORE INFTY, the escape mechanism is not in effect. But when EscapePrec

has a finite value like 10, 000, then we evaluate the sign of a number, we will not evaluate its
value to an absolute precision that is more than past 10, 000 bits. Instead, the EscapePrecFlag
will be set to a negative number and we will assume that the sign is really zero. Users can

22

check the value of this flag. This mechanism is applied only in the addition and subtraction
nodes of an expression. An example of this usage is found ${CORE PATH}/progs/nestedSqrt.

When this mechanism is invoked, the result is no longer guaranteed. In practice, there is a
high likelihood that the assumed zero is really a zero. That is because root bounds are likely
to be overly pessimistic.

Floating Point Filter. It is well-established by recent research that floating point filters
are extremely effective in avoiding costly big number computations. We implemented the float-
ing point filter of Burnikel, Funke and Schirra (BFS). Note that our implementation, to achieve
portability, does not depend on the IEEE floating point exceptions mechanism. This filter can
be turned off or turned on (the default) by calling the function setFpFilterFlag(bool).

Progressive and Non-progressive Evaluation. Users can dynamically toggle a flag to
instruct the system to turn off progressive evaluation by calling setIncrementalEvalFlag(false).
This feature may speed up comparisons that are likely to have equality outcomes. In appli-
cations such as theorem proving (see [17]), this may be the case. However, it does not au-
tomatically lead to better performance even when the comparison result is an equality. The
reason is that when we request a certain number of bits of precision, the system return a higher
precision than necessary. Hence progressive evaluation may be able to achieve the desired root
bound even though a lower precision is requested, while going straight to the root bound may
cause significant overshoot in precision. To turn back to progressive evaluation, call the same
function with a true argument.

9 Core Library Extensions

We plan to provide useful Core Library extensions (COREX for short). In the current distri-
bution, we included two simple COREX’s, for linear algebra and for geometry, which the user
may extend to suit their needs. The header files for these COREX’s are found in the files
linearAlgebra.h, geometry2d.h and geometry3d.h under the ${CORE PATH}/inc. To use
any of these COREX’s, just insert the appropriate include statements: e.g.,

#include "CORE/linearAlgebra.h"

Note that geometry3d.h and geometry2d.h already includes linearAlgebra.h. The source
for the extensions are found under ${CORE PATH}/ext.

The linearAlgebra extension defines two classes: Matrix for general m×n matrices, and
Vector for general n-dimension vectors. They support basic matrix and vector operations.
Gaussian elimination with pivoting is implemented here. Geometry3d defines classes such as
3-dimensional Point, Line and Plane based on the linear algebra API, while geometry2d

defines the analogous 2-dimensional objects.
The makefile at the top level automatically builds three versions of the COREX libraries,

named libcorex++ level1.a, libcorex++ level2.a and libcorex++ level3.a. If you use
the COREX classes in your own program, it is important to link with the correct library depend-
ing on the accuracy level you choose for your program. See examples under ${CORE PATH}/progs
which use both versions of the COREX library (in particular, ${CORE PATH}/progs/geom2d,
${CORE PATH}/progs/geom3d, and ${CORE PATH}/progs/determinant).

23

10 Miscellany

Invalid Inputs. Core will detect the construction of invalid inputs: this include NaN or
Infinity for machine floats and doubles, divide by zero and square root of negative numbers.
The normal behaviour is to print an error message and abort. But you can set the AbortFlag to
false if you do not want to automatically abort. In this case, you can check if the InvalidFlag
is negative. It is your responsibility to reset this InvalidFlag to a non-negative value.

Debugging. You can output the innards of an expression by calling the method Expr::dump().
But these may not be comprehensible except for the experts. You can print error or warning
messages by calling core error(), and these messages will be written into a file Core diagnostics.

Variant Libraries. It is often useful to store variants of the library simultaneously. For
instance, besides the normal library libcore++.a, we may want to use a variant library called
libcore++Debug.awhich has information for the debugger, or some other variant which imple-
ment some new techniques. In our Makefiles, we use a variable VAR whose value ${VAR} is nor-
mally set to the empty string. This variable is defined in the file ${CORE PATH}/make.config.
To produce a debugging version of the library, set this variable to the string ”Debug”. Then, in
the ${CORE PATH}/src, type “make” to automatically create the library libcore++${VAR}.a
which will be put in ${CORE PATH}/lib as usual. Finally, to use the debugging version of the
library, call g++ with the library option -lcore++${VAR} instead of -lcore++.

11 Bugs and Future Work

The ability of a single program to access all of four accuracy levels has not been fully imple-
mented. Currently, support for Levels 2 and 4 is fairly basic. Absolute precision in Level 3
is not optimized: the system always determines the signs of expressions, which is sometimes
unnecessary. It would be useful to extend Expr to (1) allow interval values in leaves and (2)
construct real roots of polynomials whose coefficients are expressions (i.e., diamond operator).

We started to address many of the I/O issues raised in previous versions: number formats
(scientific, positional, rational), the ability to read and write from files, especially in hex.
But there is room for improvement. Bivariate polynomials and plane algebraic curves were
introduced in Version 1.7, and are expected to be developed over the next versions.

Future plans include better floating point filters, special determinant subsystem, optimized
Level 2, optimized implementation of absolute precision bounds, complex algebraic numbers,
incremental arithmetic, more efficient root bounds, expression optimization (including com-
mon subexpression detection), expression compilation for partial evaluation, transcendental
functions, templated versions of Linear algebra and geometry extensions, graphical facilities,
enriched COREX’s.

We would like to hear your suggestions, experience and bug reports at exact@cs.nyu.edu.

24

A APPENDIX: CORE Classes Reference

There are three main classes in the CORE package: Expr, Real and BigFloat. The Expr class
is built upon the other two classes and provides the basic functionalities of Level 3 accuracy.
Although users do not have to directly access the Real and BigFloat classes, they are useful
for understanding the behavior of the Core Library. Advanced users may want to program
directly with these classes. Here is a brief summary of these classes.

Real is a “heterogeneous” number system11 that currently incorporates the following six sub-
types: int, long, double, BigInt, BigRat, and BigFloat. The first three are standard
machine types while the latter three are big number types. Since Version 1.6, BigInt
and BigRat are wrapper classes for gmp’s mpz and mpq.

Expr is the most important class of the library. It provides the mechanism to support Level
3 accuracy. An Expr object has an approximate value as well as a precision. Users can
freely set the precision of the Expr object, and its approximate value will be automatically
adjusted to satisfy the precision. Currently, the approximate value is a BigFloat.

BigFloat is an arbitrary precision floating point number representation that we built on top
of BigInt. It is used by our library to represent approximate values. A BigFloat is
represented by the triple 〈m, ε, e〉 where m is the mantissa of type BigInt, ε is the error
bound and e is the exponent. It represents the interval (m± ε)Be where B = 214. These
intervals are automatically maintained when performing arithmetic with BigFloat’s.

Besides these three classes, the user should know about the class extLong of “extended
longs”. This is a wrapper around the primitive long type with the special values of extLong::CORE posInfty,
extLong::CORE negInfty, and extLong::CORE NaN. For convenience, CORE INFTY is defined
to be extLong::CORE posInfty. By using these special values, extended longs can handle
overflows as well as undefined operations (divide by zero) in a graceful way. This class is
extensively used in specifying root bounds and precision.

The rest of this appendix is a reference for the classes BigFloat, Real and Expr.

A.1 The Class BigFloat

A BigFloat number x is given as a triple 〈m, err, exp〉 where the mantissa is m, the error-bound
is err ∈ {0, 1, . . . , B − 1} and exp is the exponent. Here the base B is equal to 214.

The “number” x really represents the interval

[(m − err)Bexp, (m + err)Bexp] (2)

We say that a real number X belongs to x if X is contained in this interval. In our implemen-
tation of BigFloat, m is BigInt, err is unsigned long, and exp is long for efficiency. You
can obtain these components of a BigFloat by calling the member functions m(), err() and
exp(). Since Version 1.4, BigInt is gmp’s Big Integer.

If err = 0 then we say the BigFloat x is error-free. When we perform the operations
+,−, ∗, / and

√
on BigFloat numbers, the error-bound is automatically propagated subject

in the following sense: if X belongs to BigFloat x and Y belongs to BigFloat y, and we
compute BigFloat z = x ◦ y (where ◦ ∈ {+,−,×,÷}) then X ◦ Y belongs to z. A similar

11In contrast, most number systems has a “homogeneous” representation. The Real class ought to provide auto-
matic conversions among subtypes, but this capability is not currently implemented.

25

condition holds for the unary operations. In other words, the error-bound in the result z must
be “large enough”.

There is leeway in the choice of the error-bound in z. Basically, our algorithms try to
minimize the error-bound in z subject to efficiency and algorithmic simplicity. This usually
means that the error-bound in z is within a small constant factor of the optimum error-bound
(see Koji’s thesis [13] for full details). But this may be impossible if both x and y are error-
free: in this case, the optimum error-bound is 0 and yet the result z may not be representable
exactly as a BigFloat. This is the case for the operations of ÷ and

√·. In this case, our
algorithm ensures that the error in z is within some default precision (the value of global
variable defAbsPrec). This is discussed under the class Real below.

A practical consideration in our design of the class BigFloat is that we insist that the error-
bound err is at most B. To achieve this, we may have to truncate the number of significant
bits in the mantissa m in (2) and modify the exponent exp appropriately.

A.1.1 Class Constructors for BigFloat

BigFloat();

BigFloat(int);

BigFloat(long);

BigFloat(double);

BigFloat(const BigInt& M, unsigned long err = 0, long exp = 0);

BigFloat(const BigFloat&);

BigFloat(const char *);

BigFloat(const std::string&);

BigFloat(const BigRat &, const extLong& r = defRelPrec,

const extLong& a = defAbsPrec);

BigFloat(const Expr &, const extLong& r = defRelPrec,

const extLong& a = defAbsPrec);

The default constructor declares an instance with a value zero. The instances of BigFloat
can also be constructed from int, long, float, double, BigInt and string. The last two
constructors needs some clarification: (a) The constructor from strings is controlled by the
global parameter defBigFloatInputDigits, and ensures that the BigFloat value constructor
differs from the string value by an absolute value of at most 10−defBigFloatInputDigits.
(b) The constructors BigFloat(BigRat R, r, a) and BigFloat(Expr e, r, a) constructs
a BigFloat that approximates the rational R and expression e to the composite precision [r,

a].

BigInt I(5);

BigFloat B(I);

BigFloat bf1("0.023");

BigFloat bf2("1234.32423e-5");

BigRat R(1, 3);

BigFloat br(R, 200, CORE INFTY);

26

A.1.2 Assignment

BigFloat& operator=(const BigFloat&);

// arithmetic and assignment operators
BigFloat& operator+=(const BigFloat&);

BigFloat& operator-=(const BigFloat&);

BigFloat& operator*=(const BigFloat&);

BigFloat& operator/=(const BigFloat&);

A.1.3 Arithmetic Operations

BigFloat operator+(const BigFloat&, const BigFloat&);

BigFloat operator-(const BigFloat&, const BigFloat&);

BigFloat operator*(const BigFloat&, const BigFloat&);

BigFloat operator/(const BigFloat&, const BigFloat&);

BigFloat sqrt(const BigFloat&);

A.1.4 Comparison

bool operator==(const BigFloat&, const BigFloat&);

bool operator!=(const BigFloat&, const BigFloat&);

bool operator< (const BigFloat&, const BigFloat&);

bool operator<=(const BigFloat&, const BigFloat&);

bool operator> (const BigFloat&, const BigFloat&);

bool operator>=(const BigFloat&, const BigFloat&);

A.1.5 Approximations

void approx(const BigInt& I, const extLong& r, const extLong& a);

void approx(const BigFloat& B, const extLong& r, const extLong& a);

void approx(const BigRat& R, const extLong& r, const extLong& a);

Another important source of BigFloat numbers is via the approximation of BigInt, BigFloat
and BigRat numbers. We provide the member functions approx which take such a number,
and precision bounds r and a and assign to the BigFloat a value that approximates the input
number to the specified composite precision bounds:

BigRat R(1,3); // declares R to have value 1/3.

BigFloat B;

B.approx(R,16,16);

// now B contains an approximation of 1/3 to precision [16,16].

27

A.1.6 Conversion Functions

double doubleValue() const; // convert to machine built-in double
float floatValue() const; // convert to machine built-in float
long longValue() const; // convert to machine built-in long
int intValue() const; // convert to machine built-in int
BigInt BigIntValue() const; // convert to a BigInt number
BigRat BigRatValue() const; // convert to a BigRat number

The semantics of these expressions are mostly self-explanatory. For conversion of BigInt,
we simply use truncation of the mantissa of the BigFloat. Users must exercise caution in
using these conversions. Overflow or underflow errors occur silently during the conversion. It
is the user’s responsibility to detect such conditions.

A.1.7 Algebraic Operations

bool isDivisible(const BigFloat &a, const BigFloat &b);

BigFloat div exact(const BigFloat &a, const BigFloat &b);

BigFloat gcd(const BigFloat &a, const BigFloat &b);

All algebraic operations are only defined for exact BigFloat values. The methods isDivisible,
div exact and gcd are global functions. The definition of divisibility is not obvious: every
floating point value can be uniquely written in the form m2e where m is an odd integer and e
is an integer. We say m2e divides m′2e′ if m divides m′ and |e| ≤ |e′| and ee′ ≥ 0. Once this
concept is defined, the meaning of these algebraic operations are standard.

A.1.8 I/O

ostream& operator<<(ostream&, const BigFloat&);

istream& operator>>(istream&, BigFloat&);

Stream I/O operators are defined for BigFloat. Integer values can be read in exactly. Frac-
tional values are read in correctly within an absolute error of 10−defBigFloatInputDigits

where defBigFloatInputDigits is a global parameter settable by users. Note that
defBigFloatInputDigits cannot be ∞.

Outputs utilize the precision parameter p associated with output streams. The parameter
p is interpreted to be the number of digits printed: in scientific format, this is the number of
significant digits but in positional format, leading zeros are counted. E.g., 0.123 and 0.001 both
have p = 4. When outputting, the error bits in a BigFloat representation are first truncated.
The output is in one of two formats: positional or scientific. In scientific notation, the length
of the mantissa can at most be p. The extra digits are rounded (to the closest possible output
value). We choose scientific notation if at least one of the following conditions is true:

1. The scientific notation flag is on. This flag is associated with output streams in C++
and can be set using standard I/O manipulator.

28

2. The absolute value of the number is smaller than 10−p+1.

3. The absolute value of the number is bigger or equal to 10p−δ where δ = 0 or 1 depending
on whether the number is a whole number or not.

Note that we may actually print out less than p digits if the BigFloat value does not have
that many digits of precision. If a BigFloat x is not error-free, the output is a decimal number
whose value approximates the value of x correctly to the last digit. That means that the last
significant digit mℓ really lies in the range dℓ ± 1, where dℓ is the last digit of output.

It is interesting to see the interplay between ostreams’ precision p and the composite
precision [defAbsPrec, defRelPrec]. Keep in mind that defAbsPrec and defRelPrec refer
to binary bits.

double q = BigRat(1, 3);

setDefaultAbsPrecision(67); // about 20 digits

cout << "q = " << setprecision(10) << q << ", in 10 digits" << endl;

// output: q = 0.33333333, in 10 digits

cout.precision(30); // or use setDefaultOutputDigits(30, cout),

// default to output 30 digits.

cout << "q = " << q << endl;

// output: q = 0.33333333333333333333, in positional notation.

Program 7

It is programmers’ responsibility to set the composite precisions high enough to have all
requested digits printed correctly.

A.1.9 Miscellaneous

To get the sign of the mantissa in a BigFloat, use

int BigFloat::sign()

which returns one of the values −1, 0,+1. Since there may be error in a BigFloat, this may
not be taken as the sign of the BigFloat unless you also verify that the following predicate is
false:

bool BigFloat::isZeroIn().

This predicate is true iff 0 lies in the interval [mantissa± err].
Another useful function is

BigFloat::isExact()

which returns a true Boolean value if the error component of the BigFloat is zero. We can
set this error component to zero by calling

BigFloat::makeExact().

There are two variants, makeCeilExact() and makeFloorExact(). Why would one do this?
There are applications where the error bound is not needed. An example is when you imple-
ment a Newton iterator for roots. The algorithm is self-correcting, so the error bound is not

29

necessary. But after an inexact operation (e.g., division), the error bound is nonzero. If you
do not set this to zero, our automatic significance arithmetic algorithms may start to truncate
the mantissa in order to keep the error bound from growing. This may prevent Newton from
converging.

The most significant bit (MSB) of any real number x is basically lg |x| (log to base 2).
When x is an exact BigFloat, this value is an integer. In general, x has an error, and it
represents an interval of the form [x− ε, x+ ε]. We provide two functions, BigFloat::uMSB()
and BigFloat::lMSB(), each returning an extended long. Assuming that 0 < x − ε, the
following inequalities must hold

BigFloat::lMSB() ≤ lg |x − ε| ≤ lg |x + ε| ≤ BigFloat::uMSB().

When x + ε < 0, we modify the inequalities approproriately. When x.isExact() is true,
the inequalities become equalities, and you can simply call the function x.MSB(). Here is an
application: suppose you have computed a BigFloat value x approximates

√
2. To see how

close x is to
√

2, you can compute

extLong p = (x*x - 2).uMSB() .

E.g., to guarantee that x−
√

2 < 2−100, it is enough to make sure that this p is less than −97.
An alternative approach is to compare x ∗ x − 2 to 2−97. You can obtain the value 2−97 by
calling another helper function

BigFloat::exp2(int n)

which returns a BigFloat whose value is 2n.
A BigFloat is really a wrapper about a BigFloatRep object. Sometime, you may like to

get at this “rep”, using the member function getRep().

A.2 The Class Real

The class Real provides a uniform interface to the six subtypes of numbers: int, long, double,
BigInt, BigRat, and BigFloat. There is a natural type coercion among these types as one
would expect. It is as follows:

int ≺ long ≺ double ≺ BigFloat ≺ BigRat ,
int ≺ long ≺ BigInt ≺ BigRat .

The BigFloat in this coercion is assumed to be error-free. To use the class Real, a program
simply includes the file Real.h.

#include "CORE/Real.h"

30

A.2.1 Class Constructors for Real

Real();

Real(int);

Real(long);

Real(double);

Real(const BigInt&);

Real(const BigRat&);

Real(const BigFloat&);

Real(const Real&);

Real(const char *str, const extLong& prec = defInputDigits);

Real(const std::string& str, const extLong& prec = defInputDigits);

The default constructor declares an instance with a default Real with the value zero.
Consistent with the C++ language, an instance can be initialized to be any subtype of Real:
int, long, double, BigInt, BigRat, and BigFloat.

In the last constructor from string, the conversion is exact in three cases: (i) when the
value is integral (i.e., the string has only digits); (ii) rational (i.e., the string contains one ‘/’
character and digits otherwise); (iii) when prec = CORE INFTY. Otherwise, it will convert to
a BigFloat number within absolute precision 10−prec .

A.2.2 Assignment

Real& operator=(const Real&);

// arithmetic and assignment operators
Real& operator+=(const Real&);

Real& operator-=(const Real&);

Real& operator*=(const Real&);

Real& operator/=(const Real&);

// post- and pre- increment and decrement operators
Real operator++();

Real operator++(int);

Real operator--();

Real operator--(int);

Users can assign values of type int, long, double, BigInt, BigRat, and BigFloat to any
instance of Real.

Real X;

X = 2; // assigns the machine int 2 to X.

X = BigInt(4294967295); // assigns the BigInt 4294967295 to X.

X = BigRat(1, 3); // assigns the BigRat 1/3 to X.

31

A.2.3 Arithmetic Operations

Real operator-() const;

Real operator+(const Real&) const;

Real operator-(const Real&) const;

Real operator*(const Real&) const;

Real operator/(const Real&) const;

Real sqrt(const Real&);

The class Real supports binary operators +, -, *, / and the unary operators -, and
sqrt() with standard operator precedence.

The rule for the binary operators bin op ∈ {+,−,×} is as follows: let typX and typY

be the underlying types of Real X and Y, respectively. Then the type of X bin op Y would
be MGU = max{typ1, typ2} where the order ≺ is defined as in the type coercion rules in
Section A.2. For instance, consider Program 8. Although X and Y are of type RealInt, their
sum Real Z is of type RealBigInt since the value of Z cannot be represented in RealInt.

Real X, Y, Z;

unsigned int x, y, z;

int xx, yy, zz;

X = 1; x = 1; xx = 1;

Y = 4294967295; // 232 − 1
y = 4294967295; // 232 − 1
yy = 2147483647; // 231 − 1
Z = X + Y; z = x + y; zz = xx + yy;

cout << "Z = " << Z << endl; // prints: Z = 4294967296 (correct!)

cout << "z= " << z << endl; // prints: z = 0 (overflow)

cout << "zz= " << zz << endl; // prints: z = -2147483648 (overflow)

Program 8

Square Root. The result of sqrt() is always a BigFloat. There are two cases: in case the
original input has an error err > 0, then the result of the sqrt() operation has error-bound at
most 16

√
err , see [13]. If err = 0, then the absolute error of the result is at most 2−a where

a=defAbsPrec.

Real X = 2.0;

cout << setprecision(11) << sqrt(X) << endl;

// prints: 1.414213562

32

Division. The type typZ of Z = X / Y is either BigRat or BigFloat. If both typX and
typY are not float, double or BigFloat, then typZ is BigRat; otherwise, it is BigFloat.

If the output type is BigRat, the output is exact. For output type of BigFloat, the error
bound in Z is determined as follows. Inputs of type float or double are considered to be
error-free, so only BigFloat can have positive error. If the error-bounds in X or Y are positive,
then the relative error in Z is at most 12max{relErrX , relErrY } where relErrX , relErrY are
the relative errors in X and Y, respectively. If both X and Y are error-free then the relative error
in Z is at most defRelPrec.

A.2.4 Comparison

bool operator==(const Real&) const;

bool operator!=(const Real&) const;

bool operator< (const Real&) const;

bool operator<=(const Real&) const;

bool operator> (const Real&) const;

bool operator>=(const Real&) const;

A.2.5 Real I/O

istream& operator>>(istream&, Real);

ostream& operator<<(ostream&, const Real&);

The input string is parsed and if the value is integral, it is read in exactly. Other-
wise, it is approximated with absolute precision defInputDigits (in decimal). Note that
if defInputDigits is ∞, the input is read in exactly as a big rational number.

To output the value of an instance of Real, we can use the standard C++ output stream
operator <<. Output is in decimal representation. There are two kinds of decimal outputs:
for int, long, BigInt and BigRat subtypes, this is the exact value of Real. But for double

and BigFloat subtypes, we use the decimal floating point notation described under BigFloat
output.

33

BigRat R(1, 3);

BigFloat B(R);

BigInt I = 1234567890;

cout.precision(8); // set output precision to 8

Real Q = R;

Real X = B;

Real Z = I;

cout << R << endl; // prints: 1/3

cout << Q << endl; // prints: 0.3333333

cout << X << endl; // prints: 0.3333333

cout << Z << endl; // prints: .12345679e+10

Program 9

Other related functions are

int BigInt::fromString(const char* s, int base = 0);

std::string BigInt::toString(int base = 10);

If base = 0, then a prefix p in string s tself determines the base: p = 0b means binary, p
= 0 means octal, p = 0x means hexadecimal, p is the empty string means decimal.

A.2.6 Approximation

Real approx(const extLong& r, const extLong& a) const;

Force the evaluation of the approximate value to the composite precision [r, a]. The re-
turned value is always a RealBigFloat value.

A.2.7 Miscellaneous

// get the sign of a Real value
int Real::sign() const;

int sign(const Real&);

34

A.3 The Class Expr

To use the class Expr, a program simply includes the file Expr.h. The file Real.h is automat-
ically included with Expr.h.

#include "CORE/Expr.h"

For most users, the ideal way to use our library is to have the user access only the class
Expr indirectly by setting the accuracy level to 3 so that double and long will be prompted
to Expr.

An instance of the class Expr E is formally a triple

E = (T, P,A)

where T is an expression tree, P a composite precision, and A is some real number or ↑
(undefined value). The internal nodes of T are labeled with one of those operators

+,−,×,÷,
√
·, (3)

and the leaves of T are labeled by Real values or is ↑. P = [r, a] is a pair of extLong, with r
non-negative. If all the leaves of T are labeled by Real values, then there is a real number V
that is the value of the expression T ; otherwise, if at least one leaf of T is labeled by ↑, then
V =↑. Finally, the value A satisfies the relation

A ≃ V [r, a].

This is interpreted to mean either V = A =↑ or A approximates V to precision P . In the
current implementation, leaves must hold exact values. Moreover, the value A is always a
BigFloat. The nodes of expression trees are instances of the class ExprRep. More precisely,
each instance of Expr has a member rep that points to an instance of ExprRep. Each instance
of ExprRep is allocated on the heap and has a type, which is either one of the operations in
(3) or type “constant”. Depending on its type, each instance of ExprRep has zero, one or two
pointers to other ExprRep. For instance, a constant ExprRep, a

√·-ExprRep and a +-ExprRep
has zero, one and two pointers, respectively. The collection of all ExprReps together with their
pointers constitute a directed acyclic graph (DAG). Every node N of this DAG defines an
expression tree E(N) in the natural way. Unlike [13], assignment to Expr has the standard
semantics. As an example, after the assignment e = f ⊙g, Val(e) = Val(f)⊙Val(g) and Val(e)
does not change until some other assignment to e. In particular, subsequent assignments to f
and g do not affect Val(e).

35

A.3.1 Class Constructors for Expr

Expr();

Expr(int);

Expr(long);

Expr(unsigned int);

Expr(unsigned long);

Expr(float);

Expr(double);

Expr(const BigInt &);

Expr(const BigFloat &);

Expr(const BigRat &);

Expr(const char *s, const extLong& prec=defInputDigits);

Expr(const std::string &s, const extLong& prec=defInputDigits);

Expr(const Real &);

Expr(const Expr &); // copy constructor

template<class NT>

Expr(const Polynomial<NT>& p, int n=0);

// this specifies the n-th smallest real root.
template<class NT>

Expr(const Polynomial<NT>& p, const BFInterval& I);

// this specifies the unique real root in interval I.

The default constructor of Expr constructs a constant Expr object with the value zero.
When a constructor is called with some Real value, then a parameter which contains the
specified Real value is declared.

In Core Library 1.6, we introduced a new constant Expr object which is constructed from
a polynomial (see Appendix A.4 for the Polynomial class). The value is a real root of this
polynomial, and so we need an argument to indicate a unique root. This can be an closed
interval I comprising a pair of BigFloat’s, or an integer n. Collectively, both n and I are
called root indicators. The interval I must be isolating meaning that it contains a unique real
root of the polynomial. If n ≥ 1, then we specify the nth smallest real root (so n = 1 is the
smallest real root). If n ≤ −1, this refers to the (−n)-th largest real root.

For convenience, we also provide three global functions to help the user construct such
Expr node:

template<class NT>

rootOf(const Polynomial<NT>& p, int n=0);

template<class NT>

rootOf(const Polynomial<NT>& p, const BFInterval& I);

template<class NT>

radical(const NT& k, int m); // the m-th root of k

So for a polynomial P, both Expr e(P, i) and Expr e = rootOf(P, i) are equivalent
(where i is a root indicator).

36

A.3.2 Assignments

Expr& operator=(const Expr&);

Expr& operator+=(const Expr&);

Expr& operator-=(const Expr&);

Expr& operator*=(const Expr&);

Expr& operator/=(const Expr&);

Expr& operator++();

Expr operator++(int);

Expr& operator--();

Expr operator--(int);

A.3.3 Arithmetic Operations

Expr operator-() const; //unary minus

Expr operator+(const Expr&, const Expr&); //addition

Expr operator-(const Expr&, const Expr&); //subtraction

Expr operator*(const Expr&, const Expr&); //multiplication

Expr operator/(const Expr&, const Expr&); //division

Expr sqrt(const Expr&); // square root

Expr abs(const Expr&); // absolute value

Expr fabs(const Expr&); // same as abs()

Expr pow(const Expr&, unsigned long); // power

Expr power(const Expr&, unsigned long); // power

For the convenience and efficiency, integer powers can be constructed by applying the
function power().

Expr e = 3 * power(B, 5);

// alternative for ”Expr e = 3 * B*B*B*B*B.

A.3.4 Comparisons

bool operator==(const Expr&, const Expr&);

bool operator!=(const Expr&, const Expr&);

bool operator< (const Expr&, const Expr&);

bool operator<=(const Expr&, const Expr&);

bool operator> (const Expr&, const Expr&);

bool operator>=(const Expr&, const Expr&);

37

The standard C++ comparison operators <, >, <=, >=, ==, and != perform “exact compari-
son”. When A < B is tested, A and B are evaluated to sufficient precision so that the decision
is made correctly. Because of root bounds, such comparisons always terminate. The returned
value is a non-negative integer, where 0 means “false” while non-0 means “true”.

Expr e[2];

Expr f[2];

e[0] = 10.0; e[1] = 11.0;

f[0] = 5.0; f[1] = 18.0;

Expr ee = sqrt(e[0])+sqrt(e[1]);

Expr ff = sqrt(f[0])+sqrt(f[1]);

if (ee>ff) cout << "sr(10)+sr(11) > sr(5)+sr(18)" << endl;

else cout << "sr(10)+sr(11) <= sr(5)+sr(18)" << endl;

// prints: sr(10) + sr(11) > sr(5) + sr(18)

Program 10

A.3.5 Expr I/O

ostream& operator<<(ostream&, const Expr&);

istream& operator>>(istream&, Expr &);

The input will construct a ConstRep with a Real value read in from the input stream. The
input routine for Real is discussed in Section A.2.5.

The standard C++ operator << outputs the stored approximate value which is always a
BigFloat number. If there is no approximate value available, it will force an evaluation to the
default precisions. It prints as many digits of significance as is currently known as correct (up
to the output precision specified). See Section A.1.8 for examples.

A.3.6 Approximation

Real approx(const extLong& r = defRelPrec, const extLong& a = defAbsPrec);

A.approx(r, a) evaluates A and returns its approximate value to precision [r, a]. If
no argument is passed, then A is evaluated to the default global precision [defRelPrec,
defAbsPrec]. If the required precision is already satisfied by the current approximation, the
function just returns the current approximate value.

38

An expression is not evaluated until the evaluation is requested explicitly (e.g., by approx())
or implicitly (e.g. by some I/O operations).

Expr e;

Real X;

unsigned r; int a;

X = e.approx(r, a);

// e is evaluated to precision at least [r, a]

// and this value is given to X;

The following helper functions allow you to get at the current approximate value in an
Expr:

Expr e;
...

e.sign(); // returns the exact sign of e (note that e.getSign() is deprecated,

as ”sign()” is the uniform interface for all the number classes
e.BigFloatValue(); // returns the current BigFloat approximation

e.getMantissa(); // returns the mantissa of current BigFloat

e.getExponent(); // returns the exponent of current BigFloat

A.3.7 Conversion Functions

double doubleValue() const; // convert to machine built-in double
float floatValue() const; // convert to machine built-in float
long longValue() const; // convert to machine built-in long
int intValue() const; // convert to machine built-in int
BigInt BigIntValue() const; // convert to a BigInt number
BigRat BigRatValue() const; // convert to a BigRat number
BigFloat BigFloatValue() const;// convert to a BigFloat number

The semantics of these operations are clear except for converting into BigRat or BigFloat.
For BigFloat, we use the current approximate value of the expression. For BigRat, we use
the same BigFloat value converted into a rational number. Note that users must exercise
caution in using these conversions. Overflow or underflow errors occur silently during the
conversion. It is the user’s responsibility to detect such conditions. Nevertheless, they are
useful for converting existing C/C++ programs. E.g., these operators can be applied on the
printf() arguments. See Section 6 for details.

A.4 Filters and Root Bounds

The expression class has an elaborate mechanism for computing root bounds, and a floating
point filter. Our filters is based on the so-called BFS Filter [4]. Our root bounds are a

39

combination of several techniques (BFMSS Bound, Measure bound and conjugate bound). In
fact, the BFMSS bound is the so-called k-ary version [14]. For more details on these topics,
see [10].

A.5 The Template Class Polynomial

Class Polynomial is a template class, which can be instantiated with the number type NT of
polynomial coefficients. We support NT chosen from int BigInt BigFloat BigRat and Expr.

Since Version 1.6, the Class Polynomial is incorporated into Core Library. In particular,
the file CORE.h or Expr.h automatically include the files poly/Poly.h and poly/Poly.tcc.
The following constructors are available for this class:

Polynomial(); // the Zero Polynomial

Polynomial(int n); // the Unit Polynomial of nominal deg n ≥ 0
Polynomial(int n, NT* coef); // coef is the array of coefficients

Polynomial(const VecNT &); // VecNT is a vector of coefficients

Polynomial(int n, const char * s[]);

Polynomial(const Polynomial &);

Polynomial(const string & s, char myX=’x’);

Polynomial(const char * s, char myX=’x’);

The last two constructors takes a string s. They are convenient and intuitive to use,
and works best for up to moderate size polynomials. For instance, The user can construct a
polynomial by calling Polynomial p("3x2̂ + 4*x + 5") using the default variable name x. If
you use some other variable name such as Z, then you can use the second argument to specify
this. E.g., Polynomial p("3Z 2̂ + 4*Z + 5", ’Z’). The syntax for a valid input string s

given by the following BNF grammar:

[poly] -> [term] | [term] ’+/-’ [poly] \\

| ’-’ [term] | ’-’ [term] ’+/-’ [poly] \\

[term] -> [basic term] | [basic term] [term] | [basic term]*[term]\\

[basic term] -> [number] | ’x’

| [basic term] ’^’ [number] | ’(’ [poly] ’)’

The recursiveness in these rules meant that an input string such as s = "(2x - 1)1̂2 (x2̂

- 2x + 3)" is valid. See ${CORE PATH}/progs/poly/parsePoly.cpp for examples.
When specifying an array coef of coefficients, the coefficient of the power product xi is

taken from coeff[i]. So the constant term is coeff[0]. If we want to reverse this ordering
(and treat coeff[0] as the leading coefficient), we can first use the above constructor, and
then reverse the polynomial (the reverse method is listed below).

An example of how to use these constructors are shown below:

40

typedef BigInt NT;

typedef Polynomial<NT> PolyNT; // convenient typedef

PolyNT P1; // Zero Polynomial

PolyNT P2(10); // Unit Polynomial of degree 10

NT coeffs[] = {1, 2, 3};
PolyNT P3(1, coeffs); // P3(x) = 1 + 2x + 3x**2

const char* s[] = {"123456789", "0", "-1"};
PolyNT P4(1, s) // P4(x) = 123456789 - x**2;

PolyNT P5("u2̂(u + 234)2̂ - 23(u + 2)*(u+1)", ’u’);

You can also input these coefficients as strings (this is useful when the coefficients are so
large that they may overflow a machine integer).

A.5.1 Assignments

Polynomial& operator=(const Polynomial&);

Polynomial& operator+=(const Polynomial&);

Polynomial& operator-=(const Polynomial&);

Polynomial& operator*=(const Polynomial&);

A.5.2 Arithmetric Operations

Polynomial& operator-();

Polynomial& operator+(const Polynomial&, const Polynomial&);

Polynomial& operator-(const Polynomial&, const Polynomial&);

Polynomial& operator*(const Polynomial&, const Polynomial&);

A.5.3 Comparisons

bool operator ==(const Polynomial&, const Polynomial&);

bool operator !=(const Polynomial&, const Polynomial&);

A.5.4 I/O

ostream& operator<<(ostream&, const Polynomial&);

istream& operator>>(istream&, Polynomial&);

41

A.5.5 Manipulation and Query Functions

The following methods are used to manipulate (i.e., modify) to query polynomials:

int expand(int n); // Change the nominal degree to n

int contract(); // get rid of leading zeros

int getDegree() const; // nominal degree

int getTrueDegree() const; // true degree

const NT& getLeadCoeff() const; // get TRUE leading coefficient

const NT& getTailCoeff() const; // get last non-zero coefficient

NT** getCoeffs() ; // get all coefficients

const NT& getCoeff(int i) const; // Get coefficient of xi

bool setCoeff(int i, const NT& cc);i // Makes cc the coefficient

// of xi; return FALSE if invalid i.
void reverse(); // reverse the coefficients

Polynomial & negate(); //Multiply by -1.

int makeTailCoeffNonzero(); // Divide (*this) by xk, so that

// the tail coeff is non-zero. Return k.

A.5.6 Algebraic Polynomial Operations

Polynomial& differentiate(); // self-differentiation

Polynomial& differentiate(int n); // multi self-differentiation

Polynomial& squareFreePart(); // P/gcd(P,P’)

Polynomial& primPart(); // Primitive Part

Polynomial pseudoRemainder (const Polynomial& B, NT& C);

// The pseudo quotient of (*this) mod B is returned, but (*this) is
// transformed into the pseudo remainder. If argument C is not not
// null, then C*(*this) = B*pseudo-quotient + pseudo-remainder.

Polynomial & negPseudoRemainder (const Polynomial& B);

// Same as the previous one, except negates the remainder.
Polynomial reduceStep (Polynomial& p);

All of the above operations are self-modifying. If this is undesirable, the user ought to
make a copy of the polynomial first.

A.5.7 Numerical Polynomial Operations

These operations include evaluation and root bounds:

42

Expr eval(const Expr&) const; // polynomial evaluation

BigFloat eval(const BigFloat&) const; // polynomial evaluation

template <class myNT> myNT eval(const myNT&) const; // evaluation at an

//arbitrary number type.
BigFloat CauchyUpperBound() const; // Cauchy Root Upper Bound

BigFloat CauchyLowerBound() const; // Cauchy Root Lower Bound

BigFloat sepBound() const; // separation bound (multiple roots allowed)

BigFloat height() const; // height function

BigFloat length() const; // length function

Note that the eval function here is a generic function: it allows you to evaluate the
polynomial at any number type myNT. The return type is also myNT. To do this, we convert
each coefficient (which has type NT) of the polynomial into type myNT. Then all the operations
of the evaluation is performed within the class myNT. For this to work properly, we therefore
require that NT≤myNY (recall that there is a natural partial ordering among number types). For
instance, if NT=BigFloat, then myNT can be BigFloat, BigRat or Expr. In particular, using
myNT will ensure exact results; but this may be expensive and in many situations, BigFloat
is the correct choice (e.g., Newton iteration).

A.5.8 Miscellaneous

Some methods in Polynomial depend on the choice of NT. In particular, some methods need to
know whether the coefficient type NT supports12 “general” division. Hence we require all such
number types to provide a static method NT::hasDivision() that returns a boolean value.
Among the supported NT, only BigRat and Expr has general division.

A.6 The Template Class Sturm

This class implements the Sturm sequence associated with a polynomial. Starting with Version
1.7 this class can handle int, BigInt, long, BigRat, BigFloat, and Expr. The most important
being BigInt, BigFloat, and Expr, although the last one can be inefficient for polynomials
with large degree. The constructors are:

Sturm(); // null constructor

Sturm(PolyNT pp); // constructor from polynomial

Sturm(int n, NT * c);// constructor from an array of coefficients

Sturm(const Sturm& s); // copy constructor

After we have constructed a Sturm object based upon some polynomial, we can use the
following functions to get more properties as described below.

12We say “general division” to distinguish this from special kinds of division such as division by 2 (this is supported
by BigFloat) or exact division (this is supported by BigInt).

43

A.6.1 Functions in Sturm Class

int signVariations(const BigFloat& x, int sx);

// Gets the sign variations of the Sturm sequence at a given point
int signVariationsAtPosInfty();

int signVariationsAtNegInfty();

int numberOfRoots(const BigFloat& x, const BigFloat& y);

//Number of roots in the closed interval [x, y]
int numberOfRoots();// number of real roots of the polynomial

int numberOfRootsAbove(const BigFloat &x);

int numberOfRootsBelow(const BigFloat &x);

void isolateRoots(const BigFloat &x, const BigFloat &y, BFVecInterval &v);

//Isolates all the roots in the interval [x,y] and returns them in v
//a list of intervals

void isolateRoots(BFVecInterval &v); // Isolates all the roots
BFInterval isolateRoot(int i); // Isolate the i-th smallest

// root, if i < 0 then we get the i-th largest root
BFInterval isolateRoot(int i, BigFloat x, BigFloat y);

// Isolate the i-th smallest root in the interval [x,y]
BFInterval firstRootAbove(const BigFloat &e);

BFInterval firstRootBelow(const BigFloat &e);

BFInterval mainRoot();//First root above 0

BFInterval refine(const BFInterval& I, int aprec);

// Refine the interval I containing the root using bisection
BFInterval refinefirstRootAbove(const BigFloat &e, int aprec);

//Get an absolute approximation to aprec of the first root above e.
//Achieved using the refine method above.

BFInterval refinefirstRootBelow(const BigFloat &e, int aprec);

// Similar to previous method, except refines the first root below e

void refineAllRoots(BFVecInterval &v, int aprec);

//Refines all the roots to absolute precision aprec (based upon refine)

A main feature of the Sturm Class is that it provides standard Newton iteration using which
we can converge rapidly to any root of the underlying polynomial. The following methods
provide the desired functionality.

44

A.6.2 Newtons Method in Sturm Class

BigFloat newtonIterN(long n, const BigFloat& bf, BigFloat& del,

unsigned long & err);
// Does n steps of standard Newton’s method starting from the initial
// value bf. The return value is the approximation to the root after
// n steps. del is an exact BigFloat which is an upper bound on the
difference between the n-th and n-1-th approximation, say deln−1.
err is an upper bound |del − deln−1|.

BigFloat newtonIterE(int prec, const BigFloat& bf, BigFloat& del);

// Does Newton iteration till del.uMSB() < −prec
BFInterval newtonRefine(const BFInterval I, int aprec);

// Given an isolating interval I for a root x*, will return
//an approximate root x such that |x − x∗| < 2−aprec.
//Assumes that the interval end points are known exactly.

void newtonRefineAllRoots(BFVecInterval &v, int aprec);

// Refines all the roots of the polynomial to the desired precision
// aprec using newtonRefine above

bool smaleBoundTest(const BigFloat& z); // Implementation of

// Smale’s point estimate to determine whether we have reached
// Newton basin. This is an a posteriori criterion unlike the next.

BigFloat yapsBound(const Polynomial<NT> & p);// An apriori bound

// to determine whether we have reached Newton zone.

A.7 The Template Class Curve

Introduced in Version 1.7, this class allows the user to manipulate arbitrary real algebraic
curves. The Curve class is derived from the BiPoly class, so we begin by describing the
BiPoly class:

BiPoly(); //Constructs the zero bi-poly.

BiPoly(int n);// creates a BiPoly with nominal y-degree of n.

BiPoly(std::vector<Polynomial<NT> > vp); // From vector of Polynomials

BiPoly(Polynomial<NT> p, bool flag=false);

//if true, it converts polynomial p(x) into p(y)
//if false, it creates the bivariate polynomial y - p(x)

BiPoly(int deg, int *d, NT *C); //Takes in a list of list of

// coefficients. Each cofficient list represents a polynomial in x
// deg - ydeg of the bipoly
// d[] - array containing the degrees of each coefficient
// (i.e., x poly)
// C[] - list of coefficients, we use array d to select the
// coefficients.

BiPoly(const BiPoly<NT>&); //Copy constructor

BiPoly(const string& s, char myX=’x’, char myY=’y’);

BiPoly(const char* s, char myX=’x’, char myY=’y’);

45

The last two constructors from strings are similar to the ones for Polynomial. The syntax
of valid input string is determined by a BNF grammar that is identical to the one for univariate
polynomials, except that we now allow a second variable ’y’.

A.7.1 Assignments

BiPoly<NT> & operator=(const BiPoly<NT>& P); // Self-assignment

BiPoly<NT> & BiPoly<NT>::operator+=(BiPoly<NT>& P); // Self-addition

BiPoly<NT> & BiPoly<NT>::operator-=(BiPoly<NT>& P); //Self-subtraction

BiPoly<NT> & BiPoly<NT>::operator*=(BiPoly<NT>& P); //Self-multiplication

A.7.2 Comparison and Arithmetic

bool operator==(const BiPoly<NT>& P, const BiPoly<NT>& Q);

//Equality operator for BiPoly
BiPoly<NT> operator+(const BiPoly<NT>& P, const BiPoly<NT>& Q);

//Addition operator for BiPoly
BiPoly<NT> operator-(const BiPoly<NT>& P, const BiPoly<NT>& Q);

//Subtraction operator for BiPoly
BiPoly<NT> operator*(const BiPoly<NT>& P, const BiPoly<NT>& Q);

//Multiplication operator for BiPoly

A.7.3 I/O

void dump(std::ostream & os, std::string msg = "");

void dump(std::string msg="");

These dump the BiPoly object to a file or standard output as a string.

A.7.4 Functions

We have the following methods to manipulate bivariate polynomials.

46

Polynomial<NT> yPolynomial(const NT & x); // Returns the univariate

//polynomial obtained by evaluating the coeffecients at x.
Polynomial<Expr> yExprPolynomial(const Expr & x);

// Expr version of yPolynomial.
Polynomial<BigFloat> yBFPolynomial(const BigFloat & x);

// BF version of yPolynomial
Polynomial<NT> xPolynomial(const NT & y) ;

// returns the polynomial (in X) when we substitute Y=y
int getYdegree() const; // returns the nominal degree in Y

int getXdegree(); // returns the nominal degree in X.

int getTrueYdegree();//returns the true Y-degree.

Expr eval(Expr x, Expr y);//Evaluate the polynomial at (x,y)

int expand(int n);

// Expands the nominal y-degree to n;
// Returns n if nominal y-degree is changed to n, else returns -2

int contract();

// contract() gets rid of leading zero polynomials
// and returns the new (true) y-degree; returns -2 if this is a no-op

BiPoly<NT> & mulXpoly(Polynomial<NT> & p);

// Multiply by a polynomial in X
BiPoly<NT> & mulScalar(NT & c);

//Multiply by a constant
BiPoly<NT> & mulYpower(int s);

// mulYpower: Multiply by Y i (COULD be a divide if i¡0)
BiPoly<NT> & divXpoly(Polynomial<NT> & p);

// Divide by a polynomial in X.
// We replace the coeffX[i] by the pseudoQuotient(coeffX[i], P)

BiPoly<NT> pseudoRemainderY (BiPoly<NT> & Q);

//Using the standard definition of pseudRemainder operation.
// –No optimization!

BiPoly<NT> & differentiateY(); //Partial Differentiation wrt Y

BiPoly<NT> & differentiateX(); //Partial Differentiation wrt X

BiPoly<NT> & differentiateXY(int m, int n);

//m times wrt X and n times wrt Y
BiPoly<NT> & convertXpoly();

//Represents the bivariate polynomial in (R[X])[Y] as a member
//of (R[Y])[X]. This is needed to calculate resultants w.r.t. X.

bool setCoeff(int i, Polynomial<NT> p);

//Set the ith Coeffecient to the polynomial passed as a parameter
void reverse();// reverse the coefficients of the bi-poly

Polynomial<NT> replaceYwithX();

BiPoly<NT>& pow(unsigned int n); //Binary-power operator

BiPoly<NT> getbipoly(string s);

//Returns a Bipoly corresponding to s, which is supposed to
//contain as place-holders the chars ’x’ and ’y’.

There are other useful friend functions for BiPoly class:

47

bool zeroPinY(BiPoly<NT> & P);

//checks whether a Bi-polynomial is a zero Polynomial
BiPoly<NT> gcd(BiPoly<NT>& P ,BiPoly<NT>& Q);

// This gcd is based upon the subresultant PRS to avoid
// exponential coeffecient growth and gcd computations, both of which
// are expensive since the coefficients are polynomials

Polynomial<NT> resY(BiPoly<NT>& P ,BiPoly<NT>& Q);

// Resultant of Bi-Polys P and Q w.r.t. Y.
// So the resultant is a polynomial in X

BiPoly<NT> resX(BiPoly<NT>& P ,BiPoly<NT>& Q);

// Resultant of Bi-Polys P and Q w.r.t. X.
// So the resultant is a polynomial in Y
// We first convert P, Q to polynomials in X. Then
// call resY and then turn it back into a polynomial in Y

We now come to the derived class Curve. All the methods provided for bivariate polyno-
mials are available for curves as well, but there are two additional functions:

int verticalIntersections(const BigFloat & x, BFVecInterval & vI,

int aprec=0);
// The list vecI is passed an isolating intervals for y’s such
// that (x,y) lies on the curve.
// If aprec is non-zero (!), the intervals have with < 2−aprec.
// Returns −2 if curve equation does not depend on Y,
// -1 if infinitely many roots at x,
// 0 if no roots at x,
// 1 otherwise

int plot(BigFloat eps=0.1, BigFloat xmin=-1.0,

BigFloat ymin=-1.0, BigFloat xmax=1.0, BigFloat ymax=1.0, int fileNo=1);
// Gives the points on the curve at resolution ”eps”. Currently,
// eps is viewed as delta-x step size.
// The display is done in the rectangle [xmin, ymin, xmax, ymax].
// The output is written into a file in the format specified
// by our drawcurve function (see COREPATH/ext/graphics).
// Heuristic: the open polygonal lines end when number of roots
// changes.

48

B APPENDIX: Sample Program

The following is a simple program from O’Rourke’s book to compute the Delaunay triangula-
tion for n points. The program tests all triples of points to see if their interior is empty of other
points, and outputs the number of “empty” triples. In our adaptation of O’Rourke’s program
below, we generate input points that are (exactly) co-circular. This highly degenerate set of
input points is expected to cause problems at Level 1 accuracy.

--

#define CORE_LEVEL 3 // Change "3" to "1" if you want Level 1 accuracy

#include "CORE/CORE.h"

main() { // Adapted from O’Rourke’s Book

double x[1000],y[1000],z[1000];/* input points x y,z=x^2+y^2 */

int n; /* number of input points */

double xn, yn, zn; /* outward vector normal to (i,j,k) */

int flag; /* true if m above (i,j,k) */

int F = 0; /* # of lower faces */

// define the rotation angle to generate points

double sintheta = 5; sintheta /= 13;

double costheta = 12; costheta /= 13;

printf("Please input the number of points on the circle: ");

scanf("%d", &n);

x[0] = 65; y[0] = 0; z[0] = x[0] * x[0] + y[0] * y[0];

for (int i = 1; i < n; i++) {

x[i] = x[i-1]*costheta - y[i-1]*sintheta; // compute x-coordinate

y[i] = x[i-1]*sintheta + y[i-1]*costheta; // compute y-coordinate

z[i] = x[i] * x[i] + y[i] * y[i]; // compute z-coordinate

}

for (int i = 0; i < n - 2; i++)

for (int j = i + 1; j < n; j++)

for (int k = i + 1; k < n; k++)

if (j != k) {

// For each triple (i,j,k), compute normal to triangle (i,j,k).

xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-z[i]);

yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-z[i]);

zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-y[i]);

if (flag = (zn < 0)) // Only examine faces on bottom of paraboloid

for (m = 0; m < n; m++)

/* For each other point m, check if m is above (i,j,k). */

flag = flag &&

((x[m]-x[i])*xn + (y[m]-y[i])*yn + (z[m]-z[i])*zn <= 0);

if (flag) {

printf("lower face indices: %d, %d, %d\n", i, j, k);

F++;

}

}

printf("A total of %d lower faces found.\n", F);

}

--

You can compile this program at Levels 3 or Level 1. At Level 3 accuracy, our program
will correctly detects all

(
n
3

)
triples; at Level 1 accuracy, it is expected to miss many empty

triples. For example, when n = 5, Level 3 gives all the 10 (=
(
5

3

)
) triangles, while Level 1

produces only 3.

49

C APPENDIX: Brief History

Version 1.1 (Dec 1998) The initial implementation by Karamcheti, Li, Pechtchanski and Yap
[8] was based on the Real/Expr package, designed by Dubé and Yap (circa 1993) and
rewritten by Ouchi [13]. Details about the underlying algorithms (especially in BigFloat)
and their error analysis may be found in the Ouchi’s thesis [13].

Version 1.2 (Sep 1999) Incorporates the BFMS root bound and other techniques to give
significant speedup to the system.

Version 1.3 (Sep 2000) Two improvements (new root bounds and faster big number pack-
ages based on LiDIA/CLN) gave significant general speedup. More examples, including a
hypergeometric function package and a randomized geometric theorem prover.

Version 1.4 (Sep 2001) Introduced a floating point filter based on the BFS filter, incremental
square root computation, improved precision-sensitive evaluation algorithms, better nu-
merical I/O support. Our big integer and big rational packages are now based on GMP,
away from LiDIA/CLN.

Version 1.5 (Aug 2002) Improvements in speed from better root bounds (k-ary bounds),
CGAL compatibility changes, file I/O for large mathematical constants (BigInt, BigFloat,
BigRat), improved hypergeometric package.

Version 1.6 (June 2003) The introduction of real algebraic numbers (a first among such
systems). CORE is now issued under the the Q PUBLIC LICENSE (QPL), concurrent
with its being distributed with CGAL under commercial licenses by Geometry Factory,
the CGAL commercial spin-off. Incorporated Polynomial and Sturm classes into Core
Library.

Version 1.7 (Aug 2004) Introduced algebraic curves and bivariate polynomials. An interactive
version of Core Library called ”InCore” is available. Beginning basic graphic capability
for display of curves. Restructuring of number classes (Expr, BigFloat, etc) to have
common reference counting and rep facilities.

50

References

[1] C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections.
Ph.D thesis, Universität des Saarlandes, March 1996.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric computation
made easy. In Proc. 15th ACM Symp. Comp. Geom., pages 341–450, 1999.

[3] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable
separation bound for arithmetic expressi ons involving radicals. Algorithmica, 27:87–99,
2000.

[4] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using cascading. In-
ternational J. Comp. Geometry and Applications, 11(3):245–266, 2001. Special Issue.

[5] C. Burnikel, J. Könnemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Exact
geometric computation in LEDA. In Proc. 11th ACM Symp. Computational Geom., pages
C18–C19, 1995.

[6] S. J. Fortune and C. J. van Wyk. Efficient exact arithmetic for computational geometry.
In Proc. 9th ACM Symp. on Computational Geom., pages 163–172, 1993.

[7] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer arithmetic
for computational geometry. ACM Transactions on Graphics, 15(3):223–248, 1996.

[8] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust numeric and
geometric computation. In Proc. 15th ACM Symp. on Computational Geometry, pages
351–359, June 1999. Miami Beach, Florida.

[9] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulation using
rational arithmetic. ACM Trans. on Graphics, 10:71–91, 1991.

[10] C. Li, S. Pion, and C. Yap. Recent progress in exact geometric computation. Jour-
nal of Logic and Algebraic Programming, 2004. To appear. Special issue on “Practical
Development of Exact Real Number Computation”.

[11] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 496–505. ACM and
SIAM, Jan. 2001.

[12] J. O’Rourke. Computational Geometry in C. Cambridge University Press, second edition
edition, 1998.

[13] K. Ouchi. Real/Expr: Implementation of an exact computation package. Master’s thesis,
New York University, Department of Computer Science, Courant Institute, January 1997.

[14] S. Pion and C. Yap. Constructive root bound method for k-ary rational input numbers.
In 19th ACM Symp. on Comp.Geometry, pages 256–263, San Diego, California., 2003.

[15] S. Schirra. Robustness and precision issues in geometric computation. Report MPI-I-98-
1-004, Max-Planck-Institut für Informatik, Saarbrücken, Germany, Jan 1998. To appear
in Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia.

[16] J. R. Shewchuk. Robust adaptive floating-point geometric predicates. In Proc. 12th ACM
Symp. on Computational Geom., pages 141–150. Association for Computing Machinery,
May 1996.

51

[17] D. Tulone, C. Yap, and C. Li. Randomized zero testing of radical expressions
and elementary geometry theorem proving. In International Workshop on Auto-
mated Deduction in Geometry (ADG’00), Zurich, Switzerland, Sept. 2000. Preprint:
ftp://cs.nyu.edu/pub/local/yap/exact/.

[18] C. Yap. A new number core for robust numerical and geometric libraries. In 3rd CGC
Workshop on Geometric Computing, 1998. Invited Talk. Brown University, Oct 11–12,
1998. Abstracts, http://www.cs.brown.edu/cgc/cgc98/home.html.

[19] C. K. Yap. Towards exact geometric computation. Computational Geometry: Theory and
Applications, 7:3–23, 1997.

[20] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Ox-
ford University Press, 2000. A version is available at URL
ftp:/Preliminary/cs.nyu.edu/pub/local/yap/algebra-bk.

[21] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 41, pages 927–952. Chapmen
& Hall/CRC, Boca Raton, FL, 2nd edition, 2004. Expanded from 1997 version.

[22] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K.
Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series on
Computing, pages 452–492. World Scientific, Singapore, 2nd edition, 1995.

52

